Home
Class 12
MATHS
If I=int(0)^(1) (1)/(1+x^(pi//2))dxthen...

If `I=int_(0)^(1) (1)/(1+x^(pi//2))dx`then

A

`"In" 2 lt1lt(pi)/(4)`

B

` I lt"In "2`

C

` "In "gt(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{1} \frac{1}{1 + x^{\frac{\pi}{2}}} \, dx \), we will use the method of comparison. ### Step 1: Establish inequalities We know that \( \frac{\pi}{2} \) is approximately between 1 and 2. Therefore, we can compare \( x^{\frac{\pi}{2}} \) with \( x^1 \) and \( x^2 \) for \( x \in [0, 1] \): \[ 1 < x^{\frac{\pi}{2}} < 2 \quad \text{for } x \in [0, 1] \] This gives us the following inequalities: \[ \frac{1}{1 + x^2} < \frac{1}{1 + x^{\frac{\pi}{2}}} < \frac{1}{1 + x} \] ### Step 2: Integrate the inequalities Now we will integrate all parts of the inequality from 0 to 1: \[ \int_{0}^{1} \frac{1}{1 + x^2} \, dx < \int_{0}^{1} \frac{1}{1 + x^{\frac{\pi}{2}}} \, dx < \int_{0}^{1} \frac{1}{1 + x} \, dx \] ### Step 3: Calculate the integrals 1. **Left Integral**: \[ \int_{0}^{1} \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) \Big|_{0}^{1} = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] 2. **Right Integral**: \[ \int_{0}^{1} \frac{1}{1 + x} \, dx = \ln(1 + x) \Big|_{0}^{1} = \ln(2) - \ln(1) = \ln(2) - 0 = \ln(2) \] ### Step 4: Combine results From the inequalities and the calculated integrals, we have: \[ \frac{\pi}{4} > I > \ln(2) \] ### Conclusion Thus, we conclude that: \[ \ln(2) < I < \frac{\pi}{4} \] ### Final Answer The answer is that \( I \) lies between \( \ln(2) \) and \( \frac{\pi}{4} \). ---

To solve the integral \( I = \int_{0}^{1} \frac{1}{1 + x^{\frac{\pi}{2}}} \, dx \), we will use the method of comparison. ### Step 1: Establish inequalities We know that \( \frac{\pi}{2} \) is approximately between 1 and 2. Therefore, we can compare \( x^{\frac{\pi}{2}} \) with \( x^1 \) and \( x^2 \) for \( x \in [0, 1] \): \[ 1 < x^{\frac{\pi}{2}} < 2 \quad \text{for } x \in [0, 1] \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

int_(0)^(pi) (1)/(5+2 cos x)dx

int_(0)^( pi)(dx)/(1+cos^(2)x)

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. If I=int(0)^(1) (1)/(1+x^(pi//2))dxthen

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |