Home
Class 12
MATHS
lim(n to oo) sum(r=1)^(n) (1)/(n)e^(r/...

`lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n)` is

A

e+1

B

e-1

C

1-e

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}, \] we can interpret this expression as a Riemann sum, which can be converted into a definite integral as \( n \) approaches infinity. ### Step-by-step Solution: 1. **Identify the Riemann Sum**: The expression \(\sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}\) can be recognized as a Riemann sum for the function \(f(x) = e^x\) over the interval \([0, 1]\). Here, \(\frac{1}{n}\) represents the width of each subinterval, and \(e^{\frac{r}{n}}\) represents the function evaluated at the right endpoint of each subinterval. 2. **Set Up the Integral**: As \(n\) approaches infinity, the sum converges to the integral of the function from 0 to 1: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}} = \int_{0}^{1} e^x \, dx. \] 3. **Calculate the Integral**: Now, we compute the integral: \[ \int e^x \, dx = e^x + C. \] Evaluating this from 0 to 1 gives: \[ \int_{0}^{1} e^x \, dx = e^1 - e^0 = e - 1. \] 4. **Final Result**: Therefore, the limit is: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}} = e - 1. \] ### Conclusion: The final answer is: \[ e - 1. \]

To solve the limit \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}, \] we can interpret this expression as a Riemann sum, which can be converted into a definite integral as \( n \) approaches infinity. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is (a) 0 (b) tan^(-1)1 (c) tan^(-1)2 (d) None of these

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2)(n+3))/(12) where T_(r) denotes the rth term of the series. Find lim_(nto oo) sum_(r=1)^(n)(1)/(T_(r)) .

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

If f(x) is integrable over [1,2] then int_(1)^(2)f(x)dx is equal to (a) lim_(nto oo) 1/n sum_(r=1)^(n)f(r/n) (b) lim_(nto oo) 1/n sum_(r=n+1)^(2n) f(r/n) (c) lim_(nto oo) 1/n sum_(r=1)^(n)f((r+n)/n) (d) lim_(nto oo) 1/n sum_(r=1)^(2n)f(r/n)

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. lim(n to oo) sum(r=1)^(n) (1)/(n)e^(r//n) is

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |