Home
Class 12
MATHS
lim(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(...

`lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))}` equals

A

`(1)/(m+1)`

B

`(1)/(m+2)`

C

`(1)/(m)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{1^m + 2^m + 3^m + \ldots + n^m}{n^{m+1}}, \] we can follow these steps: ### Step 1: Rewrite the sum We start by rewriting the sum in the numerator: \[ S_n = 1^m + 2^m + 3^m + \ldots + n^m. \] Thus, we can express our limit as: \[ \lim_{n \to \infty} \frac{S_n}{n^{m+1}}. \] ### Step 2: Factor out \(n^m\) Notice that we can factor \(n^m\) out of the sum \(S_n\): \[ S_n = n^m \left(\frac{1^m}{n^m} + \frac{2^m}{n^m} + \frac{3^m}{n^m} + \ldots + \frac{n^m}{n^m}\right) = n^m \left(\frac{1^m}{n^m} + \frac{2^m}{n^m} + \ldots + 1\right). \] ### Step 3: Simplify the limit Now, substituting this back into our limit gives: \[ \lim_{n \to \infty} \frac{n^m \left(\frac{1^m}{n^m} + \frac{2^m}{n^m} + \ldots + 1\right)}{n^{m+1}} = \lim_{n \to \infty} \frac{1}{n} \left(\frac{1^m}{n^m} + \frac{2^m}{n^m} + \ldots + 1\right). \] ### Step 4: Recognize the Riemann sum The expression inside the limit can be recognized as a Riemann sum for the function \(f(x) = x^m\) over the interval \([0, 1]\): \[ \frac{1}{n} \sum_{r=1}^{n} \left(\frac{r}{n}\right)^m. \] As \(n \to \infty\), this Riemann sum converges to the integral: \[ \int_0^1 x^m \, dx. \] ### Step 5: Evaluate the integral Now we compute the integral: \[ \int_0^1 x^m \, dx = \left[\frac{x^{m+1}}{m+1}\right]_0^1 = \frac{1^{m+1}}{m+1} - \frac{0^{m+1}}{m+1} = \frac{1}{m+1}. \] ### Conclusion Thus, we find that: \[ \lim_{n \to \infty} \frac{1^m + 2^m + 3^m + \ldots + n^m}{n^{m+1}} = \frac{1}{m+1}. \] So the final answer is: \[ \frac{1}{m+1}. \]

To solve the limit \[ \lim_{n \to \infty} \frac{1^m + 2^m + 3^m + \ldots + n^m}{n^{m+1}}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Given that lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2 , then lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n) is equal to

If mgt1 and ninN , such that 1^(m)+2^(m)+3^(m)+...+n^(m)gtn((n+1)/(k))^(m) Then, k=

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If m,n in I^(+) , then lim_(x to 0) ("sin"x^(n))/(("sin"x)^(m)) equals

If L=lim_(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(m)+….+n^(2m))) is non zero finite real, then

sum_(m=1)^(n) tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

sum_(p=1)^(n) sum_(m=p)^(n) (("n"),("m"))(("m"),("p")) is equal to

Given that lim_(nrarroo) sum_(r=1)^(n) (log_(e)(n^(2)+r^(2))-2log_(e)n)/n = log_(e)2+pi/2-2 , then evaluate : lim_(nrarroo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+2^(2))^(m) "......"(2n^(2))^(m)]^(1//n) .

2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5) +..} is equals to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. lim(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |