Home
Class 12
MATHS
lim(ntooo) ((n!)^(1//n))/(n) equals...

`lim_(ntooo) ((n!)^(1//n))/(n)` equals

A

e

B

`e^(-1)`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{(n!)^{1/n}}{n} \), we can follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit: \[ a = \lim_{n \to \infty} \frac{(n!)^{1/n}}{n} \] This can be rearranged as: \[ a = \lim_{n \to \infty} \frac{n!}{n^n}^{1/n} \] ### Step 2: Take the Natural Logarithm Taking the natural logarithm of both sides gives: \[ \log a = \lim_{n \to \infty} \left( \log(n!) - n \log n \right) \cdot \frac{1}{n} \] ### Step 3: Use Stirling's Approximation Using Stirling's approximation, we know that: \[ n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \] Thus, we can write: \[ \log(n!) \sim \frac{1}{2} \log(2 \pi n) + n \log n - n \] ### Step 4: Substitute Stirling's Approximation Substituting this into our expression for \(\log a\): \[ \log a = \lim_{n \to \infty} \left( \frac{1}{2} \log(2 \pi n) + n \log n - n - n \log n \right) \cdot \frac{1}{n} \] This simplifies to: \[ \log a = \lim_{n \to \infty} \left( \frac{1}{2n} \log(2 \pi n) - 1 \right) \] ### Step 5: Evaluate the Limit As \( n \to \infty \), the term \(\frac{1}{2n} \log(2 \pi n)\) approaches \(0\). Therefore: \[ \log a = -1 \] ### Step 6: Solve for \(a\) Exponentiating both sides gives: \[ a = e^{-1} = \frac{1}{e} \] ### Conclusion Thus, the limit is: \[ \lim_{n \to \infty} \frac{(n!)^{1/n}}{n} = \frac{1}{e} \] ---

To solve the limit \( \lim_{n \to \infty} \frac{(n!)^{1/n}}{n} \), we can follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit: \[ a = \lim_{n \to \infty} \frac{(n!)^{1/n}}{n} \] This can be rearranged as: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo) [(1)/(n)+(e^(1//n))/(n)+(e^(2//n))/(n)+...+(e^((n-1)//n))/(n)] is

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

lim_(nrarr oo)(1+sin.(1)/(n))^n equals

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

lim_(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

lim_(ntooo) {((n)/(n+1))^(alpha)+"sin"(1)/(n)}^(n) (where alphainQ ) is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. lim(ntooo) ((n!)^(1//n))/(n) equals

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |