Home
Class 12
MATHS
The value of the integral int(0)^(3) (x^...

The value of the integral `int_(0)^(3) (x^(2)+1)d[x]` is, where[*] is the greatest integer function

A

12

B

15

C

17

D

19

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{3} (x^2 + 1) \, d[\![x]\!] \), where \([\![x]\!]\) is the greatest integer function, we will follow these steps: ### Step 1: Understand the greatest integer function The greatest integer function \([\![x]\!]\) gives the largest integer less than or equal to \(x\). For the interval from 0 to 3, we can break it down as follows: - From \(0\) to \(1\), \([\![x]\!] = 0\) - From \(1\) to \(2\), \([\![x]\!] = 1\) - From \(2\) to \(3\), \([\![x]\!] = 2\) ### Step 2: Break the integral into segments We can express the integral as: \[ I = \int_{0}^{1} (x^2 + 1) \, d[\![x]\!] + \int_{1}^{2} (x^2 + 1) \, d[\![x]\!] + \int_{2}^{3} (x^2 + 1) \, d[\![x]\!] \] ### Step 3: Evaluate each segment Since \([\![x]\!]\) is constant in each segment, the differential \(d[\![x]\!]\) will be zero except at the points where it jumps (at \(x = 1\) and \(x = 2\)). Therefore, we can evaluate the contributions at these points. 1. **At \(x = 1\)**: \[ \int_{0}^{1} (x^2 + 1) \, d[\![x]\!] = (1^2 + 1) \cdot [\![1]\!] = 2 \cdot 1 = 2 \] 2. **At \(x = 2\)**: \[ \int_{1}^{2} (x^2 + 1) \, d[\![x]\!] = (2^2 + 1) \cdot [\![2]\!] = 5 \cdot 1 = 5 \] 3. **At \(x = 3\)**: \[ \int_{2}^{3} (x^2 + 1) \, d[\![x]\!] = (3^2 + 1) \cdot [\![3]\!] = 10 \cdot 1 = 10 \] ### Step 4: Combine the results Now, we can sum the contributions from each of the points: \[ I = 2 + 5 + 10 = 17 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{17} \]

To solve the integral \( I = \int_{0}^{3} (x^2 + 1) \, d[\![x]\!] \), where \([\![x]\!]\) is the greatest integer function, we will follow these steps: ### Step 1: Understand the greatest integer function The greatest integer function \([\![x]\!]\) gives the largest integer less than or equal to \(x\). For the interval from 0 to 3, we can break it down as follows: - From \(0\) to \(1\), \([\![x]\!] = 0\) - From \(1\) to \(2\), \([\![x]\!] = 1\) - From \(2\) to \(3\), \([\![x]\!] = 2\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(0.9) [x-2[x]] dx , where [.] denotes the greatest integer function, is

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

If [x]^(2)-3[x]+2=0 where [*] denotes the greatest integer function, then

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of the integral I=int_(0)^(pi)[|sinx|+|cosx|]dx, (where [.] denotes the greatest integer function) is equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Chapter Test 2
  1. The value of the integral int(0)^(3) (x^(2)+1)d[x] is, where[*] is the...

    Text Solution

    |

  2. The value of the integral int(0)^(2)x[x]dx

    Text Solution

    |

  3. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  4. Let f (x) be a function satisfying f(x)=f(x) with f(0) = 1 and g be th...

    Text Solution

    |

  5. If I=int(0)^(1)cos(2 cot^(-1)sqrt(((1-x)/(1+x))))dx then :

    Text Solution

    |

  6. The value of int(a)^(a+(pi//2))(sin^(4)x+cos^(4)x)dx is

    Text Solution

    |

  7. The vaue of int(-1)^(2) (|x|)/(x)dx is

    Text Solution

    |

  8. The value of int0^1 (x^(3))/(1+x^(8))dx is

    Text Solution

    |

  9. The value of int(0)^(3) xsqrt(1+x)dx, is

    Text Solution

    |

  10. Evaluate int(0)^(1)log(sin((pix)/(2)))dx

    Text Solution

    |

  11. Evaluate int(0)^(pi) xlog sinx dx

    Text Solution

    |

  12. If I(1)=int(0)^(oo) (dx)/(1+x^(4))dx and I(2)=underset(0)overset(oo)i...

    Text Solution

    |

  13. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  14. The value of the integral overset(1)underset(0)int (1)/((1+x^(2))^(3//...

    Text Solution

    |

  15. Prove that: int0^(2a)f(x)dx=int0^(2a)f(2a-x)dxdot

    Text Solution

    |

  16. If int(0)^(36) (1)/(2x+9)dx =log k, is equal to

    Text Solution

    |

  17. The value of the integral int(0)^(pi//2) sin^(6) x dx, is

    Text Solution

    |

  18. If int(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int(0)^(oo) e^(-ax^(2)...

    Text Solution

    |

  19. The value of the integral int 0^oo 1/(1+x^4)dx is

    Text Solution

    |

  20. The value of alpha in [0,2pi] which does not satify the equation int(p...

    Text Solution

    |

  21. lim(x to 0)(int(0)^(x^(2))sinsqrt(t) dt)/(x^(3)) is equl to

    Text Solution

    |