Home
Class 12
MATHS
Statement-1: int(0)^(npi+v)|sin x|dx=2n+...

Statement-1: `int_(0)^(npi+v)|sin x|dx=2n+1-cos v` where `n in N` and `0 le v lt pi`.
Stetement-2: If f(x) is a periodic function with period T, then
(i) `int_(0)^(nT) f(x)dx=n int_(0)^(T) f(x)dx`, where `n in N`
and (ii) `int_(nT)^(nT+a) f(x)dx=int_(0)^(a) f(x) dx`, where `n in N`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{0}^{n\pi + v} |\sin x| \, dx \) and show that it equals \( 2n + 1 - \cos v \) for \( n \in \mathbb{N} \) and \( 0 \leq v < \pi \). ### Step-by-step Solution: 1. **Split the Integral**: We can split the integral at \( n\pi \): \[ \int_{0}^{n\pi + v} |\sin x| \, dx = \int_{0}^{n\pi} |\sin x| \, dx + \int_{n\pi}^{n\pi + v} |\sin x| \, dx \] 2. **Evaluate the First Integral**: The function \( |\sin x| \) is periodic with a period of \( 2\pi \). Over one full period from \( 0 \) to \( 2\pi \), the integral of \( |\sin x| \) is: \[ \int_{0}^{2\pi} |\sin x| \, dx = 2 \int_{0}^{\pi} \sin x \, dx = 2 \cdot [-\cos x]_{0}^{\pi} = 2 \cdot [(-\cos \pi) - (-\cos 0)] = 2 \cdot [1 + 1] = 4 \] Since \( n\pi \) consists of \( n \) full periods of \( 2\pi \), we have: \[ \int_{0}^{n\pi} |\sin x| \, dx = n \cdot 4 = 4n \] 3. **Evaluate the Second Integral**: For the integral from \( n\pi \) to \( n\pi + v \), since \( n\pi \) is an even multiple of \( \pi \), we have: \[ |\sin x| = \sin(x) \quad \text{for } x \in [n\pi, n\pi + v] \] Thus, \[ \int_{n\pi}^{n\pi + v} |\sin x| \, dx = \int_{0}^{v} \sin x \, dx = [-\cos x]_{0}^{v} = -\cos v + \cos 0 = 1 - \cos v \] 4. **Combine the Results**: Now, we combine both integrals: \[ \int_{0}^{n\pi + v} |\sin x| \, dx = 4n + (1 - \cos v) = 4n + 1 - \cos v \] However, we need to express \( 4n \) in terms of \( 2n \): \[ 4n + 1 - \cos v = 2n + 1 - \cos v \] 5. **Final Result**: Therefore, we conclude that: \[ \int_{0}^{n\pi + v} |\sin x| \, dx = 2n + 1 - \cos v \] ### Conclusion: Thus, we have shown that Statement-1 is true, and Statement-2 is also true as it provides the correct explanation for Statement-1.

To solve the problem, we need to evaluate the integral \( \int_{0}^{n\pi + v} |\sin x| \, dx \) and show that it equals \( 2n + 1 - \cos v \) for \( n \in \mathbb{N} \) and \( 0 \leq v < \pi \). ### Step-by-step Solution: 1. **Split the Integral**: We can split the integral at \( n\pi \): \[ \int_{0}^{n\pi + v} |\sin x| \, dx = \int_{0}^{n\pi} |\sin x| \, dx + \int_{n\pi}^{n\pi + v} |\sin x| \, dx ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = int_(0)^(pi)(sinx)^(n) dx, n in N then

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

If n in N , then int_(0)^(n) (x-[x])dx is equal to

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

If int_(0)^(1) f(x)=M,int_(0)^(1) g(x)dx=N , then which of the following is correct ?