Home
Class 12
MATHS
Let I(n)=int(0)^(pi//4) tan^(n)x dx. S...

Let `I_(n)=int_(0)^(pi//4) tan^(n)x dx`.
Statement-1: `(1)/(n+1)lt 2I_(n) lt (1)/(n-1)` for all n=2,3,4,…..
Statement-2: `I_(n)+I_(n-2)=(1)/(n-1)`,n=3,4,5,…...

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements provided regarding the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). ### Step 1: Analyze Statement 2 We start with Statement 2: \[ I_n + I_{n-2} = \frac{1}{n-1} \text{ for } n = 3, 4, 5, \ldots \] We can prove this by using integration by parts and substitution. 1. **Express \( I_n \)**: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] 2. **Rewrite \( I_n \)**: We can express \( \tan^n x \) as \( \tan^{n-2} x \cdot \tan^2 x \): \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \tan^2 x \, dx \] Using the identity \( \tan^2 x = \sec^2 x - 1 \): \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot (\sec^2 x - 1) \, dx \] 3. **Split the Integral**: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] The first integral can be simplified using the substitution \( t = \tan x \), where \( dt = \sec^2 x \, dx \): \[ I_n = \int_0^1 t^{n-2} \, dt - I_{n-2} \] 4. **Evaluate the Integral**: The integral \( \int_0^1 t^{n-2} \, dt \) evaluates to: \[ \int_0^1 t^{n-2} \, dt = \frac{1}{n-1} \] Therefore, we have: \[ I_n + I_{n-2} = \frac{1}{n-1} \] ### Conclusion for Statement 2: Thus, Statement 2 is proven to be true. ### Step 2: Analyze Statement 1 Now we analyze Statement 1: \[ \frac{1}{n+1} < 2I_n < \frac{1}{n-1} \text{ for all } n = 2, 3, 4, \ldots \] 1. **Using the Results from Statement 2**: From Statement 2, we know: \[ I_n + I_{n-2} = \frac{1}{n-1} \] This implies: \[ I_n < \frac{1}{n-1} \] 2. **Finding a Lower Bound**: We also know that: \[ I_n + I_{n+2} = \frac{1}{n+1} \] This implies: \[ I_n > \frac{1}{n+1} - I_{n+2} \] Since \( I_{n+2} \) is positive, we can conclude: \[ I_n > \frac{1}{n+1} - \text{(positive value)} > \frac{1}{n+1} \] 3. **Combining the Results**: Therefore, we can combine these inequalities: \[ \frac{1}{n+1} < I_n < \frac{1}{n-1} \] Multiplying through by 2 gives: \[ \frac{2}{n+1} < 2I_n < \frac{2}{n-1} \] ### Conclusion for Statement 1: Thus, Statement 1 is also proven to be true. ### Final Conclusion: Both statements are true, and Statement 2 provides a correct explanation for Statement 1.

To solve the problem, we need to analyze the two statements provided regarding the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \). ### Step 1: Analyze Statement 2 We start with Statement 2: \[ I_n + I_{n-2} = \frac{1}{n-1} \text{ for } n = 3, 4, 5, \ldots \] We can prove this by using integration by parts and substitution. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to