Home
Class 12
MATHS
Let n in N such that n gt 1. Statement...

Let `n in N` such that `n gt 1`.
Statement-1: `int_(oo)^(0) (1)/(1+x^(n))dx=int_(0)^(1) (1)/((1-x^(n))^(1//n))dx`
Statement-2: `int_a^b f(x)dx=int_(a)^(b) f(a+b-x)dx`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
B

Clearly, statement-2 is true (See page 44.17 Property IX).
Putting `x^(n)=tan^(2)theta`, we get
`I_(1)=underset(0)overset(oo)int (1)/(1+x^(n))dx=(2)/(n)underset(0)overset(pi//2)int tan^((2)/(n)-1)theta d theta`
Putting `x^(n)=sin^(2) theta`, we get
`I_(2)=(2)/(n)underset(0)overset(pi//2)int tan^((2)/(n)-1) theta d theta`
`:. underset(0)overset(oo)int(1)/(1+x^(n))dx=underset(0)overset(1)int(1)/((1-x^(n))^(1//n)dx`
So, statement-1 is also true.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Evaluate I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0 .

Evaluate : int_(0)^(1)x(1-x)^(n)dx

11. int_(1)^(2)dx/(x.(x^n+1))

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

int (2x^(n-1))/(x^n+3) dx