Home
Class 12
MATHS
Statement-1: int(0)^(sin^(2)x) sin^(-1...

Statement-1:
`int_(0)^(sin^(2)x) sin^(-1)sqrt(t )dt+int_(0)^(cos^(2)x) cos^(-1)sqrt(t )dt=(pi)/(4)` for all x.
Statement-2:`(d)/(dx) int_(theta(x))overset(psi(x)) f(t)dt=psi'(x)f(psi(x))-theta'(x)f(theta(x))`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements and prove the correctness of Statement 1 using the Leibniz rule as mentioned in Statement 2. ### Step-by-Step Solution: 1. **Understanding Statement 1:** We need to evaluate the expression: \[ \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt = \frac{\pi}{4} \] for all \( x \). 2. **Applying Leibniz Rule:** We will differentiate both integrals with respect to \( x \) using the Leibniz rule, which states: \[ \frac{d}{dx} \int_{\theta(x)}^{\psi(x)} f(t) \, dt = \psi'(x) f(\psi(x)) - \theta'(x) f(\theta(x)) \] 3. **Differentiating the First Integral:** For the first integral: \[ I_1 = \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt \] Using the Leibniz rule: \[ \frac{dI_1}{dx} = \sin^{-1}(\sqrt{\sin^2 x}) \cdot \frac{d}{dx}(\sin^2 x) - 0 \] Since \( \sin^{-1}(\sqrt{\sin^2 x}) = \sin x \) and \( \frac{d}{dx}(\sin^2 x) = 2 \sin x \cos x \): \[ \frac{dI_1}{dx} = \sin x \cdot (2 \sin x \cos x) = 2 \sin^2 x \cos x \] 4. **Differentiating the Second Integral:** For the second integral: \[ I_2 = \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \] Again applying the Leibniz rule: \[ \frac{dI_2}{dx} = \cos^{-1}(\sqrt{\cos^2 x}) \cdot \frac{d}{dx}(\cos^2 x) - 0 \] Since \( \cos^{-1}(\sqrt{\cos^2 x}) = \cos x \) and \( \frac{d}{dx}(\cos^2 x) = -2 \cos x \sin x \): \[ \frac{dI_2}{dx} = \cos x \cdot (-2 \cos x \sin x) = -2 \cos^2 x \sin x \] 5. **Combining the Derivatives:** Now we combine the derivatives of both integrals: \[ \frac{d}{dx} \left( I_1 + I_2 \right) = 2 \sin^2 x \cos x - 2 \cos^2 x \sin x \] This simplifies to: \[ \frac{d}{dx} \left( I_1 + I_2 \right) = 2 \sin x \cos x (\sin x - \cos x) \] 6. **Setting the Derivative Equal to Zero:** Since the right-hand side of Statement 1 is a constant \( \frac{\pi}{4} \), its derivative is zero: \[ 2 \sin x \cos x (\sin x - \cos x) = 0 \] This implies either \( \sin x = 0 \), \( \cos x = 0 \), or \( \sin x = \cos x \). 7. **Conclusion:** Since the derivative equals zero for all \( x \), the original statement holds true: \[ \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt = \frac{\pi}{4} \] Therefore, Statement 1 is correct.

To solve the given problem, we need to analyze both statements and prove the correctness of Statement 1 using the Leibniz rule as mentioned in Statement 2. ### Step-by-Step Solution: 1. **Understanding Statement 1:** We need to evaluate the expression: \[ \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt = \frac{\pi}{4} ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

Let f(x)=int_0^(sin^2x) sin^-1(sqrt(t))dt+int_0^(cos^2x) cos^-1(sqrt(t))dt , then (A) f(x) is a constant function (B) f(pi/4)=0 (C) f(pi/3)=pi/4 (D) f(pi/4)=pi/4

If int_(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt , is

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).