Home
Class 12
MATHS
Statement-1: int(0)^(pi//2) (1)/(1+tan^(...

Statement-1: `int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4)`
Statement-2: `int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both statements step by step. ### Statement 1: We need to evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx \] **Step 1: Use the property of definite integrals** We can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we set \( a = \frac{\pi}{2} \), so we rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3\left(\frac{\pi}{2} - x\right)} \, dx \] **Step 2: Simplify the integrand** Using the identity \( \tan\left(\frac{\pi}{2} - x\right) = \cot x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cot^3 x} \, dx \] Now, we can rewrite \( \cot^3 x \) as \( \frac{1}{\tan^3 x} \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 x}{\tan^3 x + 1} \, dx \] **Step 3: Add the two integrals** Now, we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\tan^3 x}{\tan^3 x + 1} \, dx \) Adding both expressions: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + \tan^3 x} + \frac{\tan^3 x}{\tan^3 x + 1} \right) \, dx \] **Step 4: Simplify the integrand** The sum simplifies to: \[ \frac{1 + \tan^3 x}{1 + \tan^3 x} = 1 \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} \] **Step 5: Solve for \( I \)** Now, dividing both sides by 2: \[ I = \frac{\pi}{4} \] Thus, Statement 1 is correct: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx = \frac{\pi}{4} \] ### Statement 2: We need to evaluate the statement: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a + x) \, dx \] **Step 1: Change of variable** Let \( t = a + x \). Then, \( dt = dx \). **Step 2: Change the limits** When \( x = 0 \), \( t = a \) and when \( x = a \), \( t = 2a \). Thus, we rewrite the integral: \[ \int_{0}^{a} f(a + x) \, dx = \int_{a}^{2a} f(t) \, dt \] **Step 3: Compare the integrals** The left-hand side is: \[ \int_{0}^{a} f(x) \, dx \] The right-hand side is: \[ \int_{a}^{2a} f(t) \, dt \] These two integrals are not necessarily equal unless \( f(x) \) has specific properties. Therefore, Statement 2 is incorrect. ### Conclusion: - Statement 1 is true: \( \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx = \frac{\pi}{4} \) - Statement 2 is false: \( \int_{0}^{a} f(x) \, dx \neq \int_{0}^{a} f(a + x) \, dx \)

To solve the problem, we will analyze both statements step by step. ### Statement 1: We need to evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \tan^3 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) (1)/(4+3 cos x)dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_0^(pi/2)1/(1+tan^2x)dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Statement-1: int_(0)^(pi//2) x cot x dx=(pi)/(2)log2 Statement-2: int_(0)^(pi//2) log sin x dx=-(pi)/(2)log2

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^( pi)(dx)/(1+sin x)

int_(0)^( pi)(dx)/(1+cos x)