Home
Class 12
MATHS
Let F(x)=int(a)^(x^(2)) cos sqrt(t)dt ...

Let F(x)`=int_(a)^(x^(2)) cos sqrt(t)dt`
Statement-1: F'(x)=cos x
Statement-2: If f(x)`=int_(a)^(x) phi(t) dt`, then f'(x)=`phi`(x).

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
`F(x)=underset(1)overset(x^(2))int cos sqrt(t)dt`
`rArr F'(x)=underset(1)overset(x^(2))int 0 dt+(d)/(dx)(x^(2))cos x-(d)/(dx)(1)cos 1=2x cos x`
So, statement-1 is not true. Clearly, statement-2 is true.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x) = int_(-2)^(x)|t + 1|dt , then

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

" If " f(x) =int_(0)^(x)" t sin t dt tehn " f(x) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(-x)+f(x)=0 then int_a^x f(t) dt is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Statement-1: If f(x)=int_(1)^(x) (log_(e )t)/(1+t+t^(2))dt , then f(x)=f((1)/(x)) for all x gr 0 . Statement-2:If f(x) =int_(1)^(x) (log_(e )t)/(1+t)dt , then f(x)+f((1)/(x))=((log_(e )x)^(2))/(2)