Home
Class 12
MATHS
I(n)=int(0)^(pi//4) tan^(n)x dx, where n...

`I_(n)=int_(0)^(pi//4) tan^(n)x dx`, where `n in N`
Statement-1: `int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12)`
Statement-2: `I_(n)+I_(n-2)=(1)/(n-1)`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and verify the statements provided. ### Step 1: Express \( I_n \) in terms of \( I_{n-2} \) We start with the integral: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] Using the identity \( \tan^n x = \tan^{n-2} x \cdot \tan^2 x \) and the fact that \( \tan^2 x = \sec^2 x - 1 \), we can rewrite the integral: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot (\sec^2 x - 1) \, dx \] This expands to: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \] Thus, we have: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^{n-2} x \cdot \sec^2 x \, dx - I_{n-2} \] ### Step 2: Change of Variables Now, we perform a change of variables. Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \). The limits change as follows: - When \( x = 0 \), \( t = \tan(0) = 0 \) - When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \) This gives us: \[ I_n = \int_0^1 t^{n-2} \, dt - I_{n-2} \] ### Step 3: Evaluate the Integral Now we evaluate the integral: \[ \int_0^1 t^{n-2} \, dt = \left[ \frac{t^{n-1}}{n-1} \right]_0^1 = \frac{1}{n-1} \] Thus, we have: \[ I_n + I_{n-2} = \frac{1}{n-1} \] ### Step 4: Verify Statement 2 This confirms Statement 2: \[ I_n + I_{n-2} = \frac{1}{n-1} \] ### Step 5: Calculate \( I_4 \) Now we need to calculate \( I_4 \) using Statement 2: 1. For \( n = 4 \): \[ I_4 + I_2 = \frac{1}{3} \] 2. For \( n = 2 \): \[ I_2 + I_0 = 1 \] where \( I_0 = \int_0^{\frac{\pi}{4}} 1 \, dx = \frac{\pi}{4} \). Thus: \[ I_2 + \frac{\pi}{4} = 1 \implies I_2 = 1 - \frac{\pi}{4} \] ### Step 6: Substitute \( I_2 \) into \( I_4 \) Substituting \( I_2 \) back into the equation for \( I_4 \): \[ I_4 + \left(1 - \frac{\pi}{4}\right) = \frac{1}{3} \] This simplifies to: \[ I_4 = \frac{1}{3} - 1 + \frac{\pi}{4} = \frac{\pi}{4} - \frac{2}{3} \] ### Step 7: Simplify \( I_4 \) To combine the fractions: \[ I_4 = \frac{\pi}{4} - \frac{2}{3} = \frac{3\pi - 8}{12} \] ### Conclusion Thus, we have verified both statements: - Statement 1: \( I_4 = \frac{3\pi - 8}{12} \) is true. - Statement 2: \( I_n + I_{n-2} = \frac{1}{n-1} \) is true.

To solve the problem, we need to evaluate the integral \( I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \) and verify the statements provided. ### Step 1: Express \( I_n \) in terms of \( I_{n-2} \) We start with the integral: \[ I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

Let I_(n)=int_(0)^(pi//4) tan^(n)x dx . Statement-1: (1)/(n+1)lt 2I_(n) lt (1)/(n-1) for all n=2,3,4,….. Statement-2: I_(n)+I_(n-2)=(1)/(n-1) ,n=3,4,5,…...

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

If I_n=int_0^(pi//4)tan^("n")x dx , prove that I_n+I_(n-2)=1/(n-1)dot

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

I_n = int_0^(pi/4) tan^n x dx , then the value of n(l_(n-1) + I_(n+1)) is