Home
Class 12
MATHS
Statement-1: The value of the integral ...

Statement-1: The value of the integral
`int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx` is equal to `(pi)/(6)`
Statement-2: `int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx`

A

Statement-1 is true, Statement-2 is True,Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

Verified by Experts

The correct Answer is:
D

Clearly, statement-2, being a standard property, is true.
We know that `underset(a)overset(b)int (f(x))/(f(x)+f(a+b-x))dx=(b-a)/(2)`
`:.underset(pi//6)overset(pi//3)int (1)/(1+sqrt(tanx))dx=underset(pi//6)overset(pi//2)int (sqrt(cos)x)/(sqrt(cos)x+sqrt(sin)x)dx=(1)/(2)((pi)/(3)-(pi)/(6))=(pi)/(12)`
So, statement-1 is not true.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|143 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|145 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

Statement I The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tan x)) is pi/6 Statement II int_(a)^(b) f(x) dx = int_(a)^(b) f(a+b-x)dx

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral I=int_(0)^(pi)(x)/(1+tan^(6)x)dx, (x not equal to (pi)/(2) ) is equal to

int_(pi//6)^(pi//3) sin(3x)dx=