Home
Class 12
MATHS
The value of the integral intalpha^beta ...

The value of the integral `int_alpha^beta (1)/(sqrt((x-alpha)(beta-x)))dx " for "beta gt alpha`, is

A

`sin^(-1)(alpha//beta)`

B

`pi//2`

C

`sin^(-1)(beta//2alpha)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\alpha}^{\beta} \frac{1}{\sqrt{(x - \alpha)(\beta - x)}} \, dx \] for \( \beta > \alpha \), we will follow these steps: ### Step 1: Substitution Let us denote \[ f(x) = (x - \alpha)(\beta - x) \] This gives us \[ f(x) = -x^2 + (\alpha + \beta)x - \alpha\beta \] ### Step 2: Completing the Square We can rewrite \( f(x) \) by completing the square: \[ f(x) = -\left(x^2 - (\alpha + \beta)x + \alpha\beta\right) \] To complete the square, we add and subtract \(\left(\frac{\alpha + \beta}{2}\right)^2\): \[ f(x) = -\left(x - \frac{\alpha + \beta}{2}\right)^2 + \left(\frac{\alpha + \beta}{2}\right)^2 - \alpha\beta \] ### Step 3: Simplifying the Expression Now, we simplify the expression: \[ f(x) = -\left(x - \frac{\alpha + \beta}{2}\right)^2 + \frac{(\alpha + \beta)^2}{4} - \alpha\beta \] We can express \(\frac{(\alpha + \beta)^2}{4} - \alpha\beta\) as: \[ \frac{\alpha^2 + 2\alpha\beta + \beta^2 - 4\alpha\beta}{4} = \frac{(\alpha - \beta)^2}{4} \] Thus, we have: \[ f(x) = \frac{(\alpha - \beta)^2}{4} - \left(x - \frac{\alpha + \beta}{2}\right)^2 \] ### Step 4: Substituting Back into the Integral Now, substituting back into the integral: \[ I = \int_{\alpha}^{\beta} \frac{1}{\sqrt{\frac{(\alpha - \beta)^2}{4} - \left(x - \frac{\alpha + \beta}{2}\right)^2}} \, dx \] ### Step 5: Change of Variable Let \[ u = x - \frac{\alpha + \beta}{2} \implies dx = du \] When \( x = \alpha \), \( u = \alpha - \frac{\alpha + \beta}{2} = \frac{\alpha - \beta}{2} \) and when \( x = \beta \), \( u = \beta - \frac{\alpha + \beta}{2} = \frac{\beta - \alpha}{2} \). Thus, the limits change from \( \frac{\alpha - \beta}{2} \) to \( \frac{\beta - \alpha}{2} \): \[ I = \int_{\frac{\alpha - \beta}{2}}^{\frac{\beta - \alpha}{2}} \frac{1}{\sqrt{\frac{(\alpha - \beta)^2}{4} - u^2}} \, du \] ### Step 6: Recognizing the Integral Form This integral is of the form: \[ \int \frac{1}{\sqrt{a^2 - u^2}} \, du \] where \( a = \frac{\alpha - \beta}{2} \). ### Step 7: Evaluating the Integral The integral evaluates to: \[ \sin^{-1}\left(\frac{u}{a}\right) \bigg|_{\frac{\alpha - \beta}{2}}^{\frac{\beta - \alpha}{2}} = \sin^{-1}(1) - \sin^{-1}(-1) \] ### Step 8: Final Calculation Calculating the values: \[ \sin^{-1}(1) = \frac{\pi}{2}, \quad \sin^{-1}(-1) = -\frac{\pi}{2} \] Thus, \[ I = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] ### Conclusion The value of the integral is \[ \boxed{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the inntegral int_(alpha)^(beta) (1)/(sqrt((x-alpha)(beta-x)))dx is

The value of the integral int_(alpha)^(beta) sqrt((x-alpha)(beta-x))dx , is

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

int(dx)/(sin(x-alpha)sin(x-beta)

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

The value of the determinant |(alpha,beta,l),(alpha,x, n),(alpha,beta,x)| is independent of l b. independent of n c. alpha(x-l)(x-beta) d. alphabeta(x-l)(x-n)

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

If alpha and beta are zeroes of a quadratic polynomial ax^(2)+bx+c . Find the value of: (i) alpha^(2)-beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha^(4)beta+beta^(4)alpha (iv) sqrt((alpha)/(beta))+sqrt((beta)/(alpha)) (v) (alpha^(2))/(beta)+(beta^(2))/(alpha) (alpha^(-1)+(1)/(alpha^(-1)))(beta^(-1)+(1)/(beta^(-1)))

The value of int_(alpha)^(beta) x|x|dx , where a lt 0 lt beta , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If I=int(-2)^(2) dx, then I equals

    Text Solution

    |

  2. The value of the integral intalpha^beta (1)/(sqrt((x-alpha)(beta-x)))d...

    Text Solution

    |

  3. int(1)^((4sqrt(3))/(3)-1)(x+2)/(sqrt(x^(2)+2x-3))dx equal to

    Text Solution

    |

  4. int(0)^(pi^(2)//4) sin sqrt(x)dx equals to

    Text Solution

    |

  5. int(1//2)^(2) |log(10)x|dx equals to

    Text Solution

    |

  6. Evaluate: int(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a ...

    Text Solution

    |

  7. The value of the integral int(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx, i...

    Text Solution

    |

  8. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  9. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  10. If f(x)==|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  11. Evaluate lim(xto oo) ((int(0)^(x)e^(x^(2))dx)^(2))/(int(0)^(x)e^(2x^(2...

    Text Solution

    |

  12. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  13. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  14. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  15. The difference between the greatest and least values of the function p...

    Text Solution

    |

  16. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  17. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  18. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  19. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  20. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |