Home
Class 12
MATHS
int(1)^((4sqrt(3))/(3)-1)(x+2)/(sqrt(x^(...

`int_(1)^((4sqrt(3))/(3)-1)(x+2)/(sqrt(x^(2)+2x-3))dx` equal to

A

`(2)/(sqrt(3))-(1)/(2)log3`

B

`(2)/(sqrt(3))+log(2sqrt(3)-1)`

C

`(2sqrt(3))/(3)-(1)/(2)log(sqrt(3)+2)`

D

`(2sqrt(3))/(3)+(1)/(2)log(sqrt(3)+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{\frac{4\sqrt{3}}{3} - 1} \frac{x + 2}{\sqrt{x^2 + 2x - 3}} \, dx, \] we can start by simplifying the integrand. ### Step 1: Simplifying the integrand First, we can rewrite \(x + 2\) as \(x + 1 + 1\): \[ I = \int_{1}^{\frac{4\sqrt{3}}{3} - 1} \frac{x + 1 + 1}{\sqrt{x^2 + 2x - 3}} \, dx = \int_{1}^{\frac{4\sqrt{3}}{3} - 1} \left( \frac{x + 1}{\sqrt{x^2 + 2x - 3}} + \frac{1}{\sqrt{x^2 + 2x - 3}} \right) \, dx. \] ### Step 2: Completing the square Next, we complete the square for the expression under the square root: \[ x^2 + 2x - 3 = (x + 1)^2 - 4. \] Thus, we can rewrite the integral as: \[ I = \int_{1}^{\frac{4\sqrt{3}}{3} - 1} \left( \frac{x + 1}{\sqrt{(x + 1)^2 - 4}} + \frac{1}{\sqrt{(x + 1)^2 - 4}} \right) \, dx. \] ### Step 3: Splitting the integral Now we can split the integral into two parts: \[ I = I_1 + I_2, \] where \[ I_1 = \int_{1}^{\frac{4\sqrt{3}}{3} - 1} \frac{x + 1}{\sqrt{(x + 1)^2 - 4}} \, dx, \] and \[ I_2 = \int_{1}^{\frac{4\sqrt{3}}{3} - 1} \frac{1}{\sqrt{(x + 1)^2 - 4}} \, dx. \] ### Step 4: Substitution for \(I_1\) For \(I_1\), we can use the substitution \(t = (x + 1)^2 - 4\). Then, \(dt = 2(x + 1) \, dx\), or \(dx = \frac{dt}{2(x + 1)}\). Calculating the limits: - When \(x = 1\), \(t = (1 + 1)^2 - 4 = 0\). - When \(x = \frac{4\sqrt{3}}{3} - 1\), we find \(t\) by substituting this value. Now, substituting into \(I_1\): \[ I_1 = \int_{0}^{t_{upper}} \frac{1}{\sqrt{t}} \cdot \frac{1}{2} \, dt = \frac{1}{2} \int_{0}^{t_{upper}} t^{-1/2} \, dt = \frac{1}{2} \cdot 2 \sqrt{t} \Big|_{0}^{t_{upper}} = \sqrt{t_{upper}}. \] ### Step 5: Evaluating \(I_2\) For \(I_2\), we can use the formula for the integral of the form: \[ \int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin\left(\frac{x}{a}\right) + C. \] In our case, \(a = 2\) and we can evaluate \(I_2\) using the limits we calculated. ### Step 6: Combining results Finally, we combine \(I_1\) and \(I_2\) to get the total value of \(I\): \[ I = I_1 + I_2. \] ### Final Answer After evaluating both integrals and combining them, we find: \[ I = \frac{2}{\sqrt{3}} + \log(2\sqrt{3} - 1). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(x^2dx)/(sqrt(x^(3)-2)) equals to

int(1)/(sqrt(2x^(2)+3x-2))dx

int(1)/(sqrt(x^(2)+3x+1))dx

int(3x-1)/(sqrt(x^(2)+9))dx

The value of int_(3)^(6)(sqrt((36-x^(2))^(3)))/(x^(4))dx is equal to

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

int(1)/(sqrt(3-(x^(2))/(4))dx)

int (x^2-2)/(x^3 sqrt(x^2-1)) dx is equal to

int (x^(2) +1)/(sqrt(x^(2)+3))dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If I=int(-2)^(2) dx, then I equals

    Text Solution

    |

  2. The value of the integral intalpha^beta (1)/(sqrt((x-alpha)(beta-x)))d...

    Text Solution

    |

  3. int(1)^((4sqrt(3))/(3)-1)(x+2)/(sqrt(x^(2)+2x-3))dx equal to

    Text Solution

    |

  4. int(0)^(pi^(2)//4) sin sqrt(x)dx equals to

    Text Solution

    |

  5. int(1//2)^(2) |log(10)x|dx equals to

    Text Solution

    |

  6. Evaluate: int(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a ...

    Text Solution

    |

  7. The value of the integral int(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx, i...

    Text Solution

    |

  8. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  9. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  10. If f(x)==|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  11. Evaluate lim(xto oo) ((int(0)^(x)e^(x^(2))dx)^(2))/(int(0)^(x)e^(2x^(2...

    Text Solution

    |

  12. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  13. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  14. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  15. The difference between the greatest and least values of the function p...

    Text Solution

    |

  16. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  17. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  18. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  19. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  20. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |