Home
Class 12
MATHS
int(1//2)^(2) |log(10)x|dx equals to...

`int_(1//2)^(2) |log_(10)x|dx` equals to

A

`log10(8//e)`

B

`(1)/(2)log10(8//e)`

C

`log10(2//e)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{1}{2}}^{2} |\log_{10} x| \, dx \), we will follow these steps: ### Step 1: Analyze the function \( |\log_{10} x| \) The logarithmic function \( \log_{10} x \) changes sign at \( x = 1 \): - For \( x < 1 \), \( \log_{10} x < 0 \) (negative). - For \( x = 1 \), \( \log_{10} x = 0 \). - For \( x > 1 \), \( \log_{10} x > 0 \) (positive). Thus, we can express the absolute value function as: \[ |\log_{10} x| = \begin{cases} -\log_{10} x & \text{if } x \in \left[\frac{1}{2}, 1\right) \\ \log_{10} x & \text{if } x \in (1, 2] \end{cases} \] ### Step 2: Split the integral We can split the integral at \( x = 1 \): \[ I = \int_{\frac{1}{2}}^{1} -\log_{10} x \, dx + \int_{1}^{2} \log_{10} x \, dx \] ### Step 3: Calculate each integral #### Integral from \( \frac{1}{2} \) to \( 1 \) \[ I_1 = \int_{\frac{1}{2}}^{1} -\log_{10} x \, dx = -\left[ x \log_{10} x - x \right]_{\frac{1}{2}}^{1} \] Calculating the limits: - At \( x = 1 \): \[ 1 \log_{10} 1 - 1 = 0 - 1 = -1 \] - At \( x = \frac{1}{2} \): \[ \frac{1}{2} \log_{10} \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \cdot (-\log_{10} 2) - \frac{1}{2} = -\frac{1}{2} \log_{10} 2 - \frac{1}{2} \] Thus, \[ I_1 = -\left(-1 + \left(-\frac{1}{2} \log_{10} 2 - \frac{1}{2}\right)\right) = 1 - \left(-\frac{1}{2} \log_{10} 2 - \frac{1}{2}\right) \] \[ = 1 + \frac{1}{2} \log_{10} 2 + \frac{1}{2} = \frac{3}{2} + \frac{1}{2} \log_{10} 2 \] #### Integral from \( 1 \) to \( 2 \) \[ I_2 = \int_{1}^{2} \log_{10} x \, dx = \left[ x \log_{10} x - x \right]_{1}^{2} \] Calculating the limits: - At \( x = 2 \): \[ 2 \log_{10} 2 - 2 \] - At \( x = 1 \): \[ 1 \log_{10} 1 - 1 = -1 \] Thus, \[ I_2 = \left(2 \log_{10} 2 - 2\right) - (-1) = 2 \log_{10} 2 - 2 + 1 = 2 \log_{10} 2 - 1 \] ### Step 4: Combine the results Now, combining both parts: \[ I = I_1 + I_2 = \left(\frac{3}{2} + \frac{1}{2} \log_{10} 2\right) + \left(2 \log_{10} 2 - 1\right) \] \[ = \frac{3}{2} - 1 + \frac{1}{2} \log_{10} 2 + 2 \log_{10} 2 = \frac{1}{2} + \frac{5}{2} \log_{10} 2 \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{2} + \frac{5}{2} \log_{10} 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(4) log_(e)[x]dx equals

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int_(0)^(1)x log (1+2 x)dx

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(1)/(x cos^(2)(log_(e)x))dx

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

int_0^1log(1/x-1)dx is equal to

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

int_(0)^(3)(|x|+|x-1|+|x-2|)dx equals

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. int(1)^((4sqrt(3))/(3)-1)(x+2)/(sqrt(x^(2)+2x-3))dx equal to

    Text Solution

    |

  2. int(0)^(pi^(2)//4) sin sqrt(x)dx equals to

    Text Solution

    |

  3. int(1//2)^(2) |log(10)x|dx equals to

    Text Solution

    |

  4. Evaluate: int(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a ...

    Text Solution

    |

  5. The value of the integral int(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx, i...

    Text Solution

    |

  6. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  7. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  8. If f(x)==|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  9. Evaluate lim(xto oo) ((int(0)^(x)e^(x^(2))dx)^(2))/(int(0)^(x)e^(2x^(2...

    Text Solution

    |

  10. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  11. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  13. The difference between the greatest and least values of the function p...

    Text Solution

    |

  14. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  15. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  16. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  17. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  18. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |

  19. If a lt int(0)^(2pi) (1)/(10+3 cos x)dx lt b. Then the ordered pair (a...

    Text Solution

    |

  20. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx ,is (a)0 (...

    Text Solution

    |