Home
Class 12
MATHS
The value of the integral int(-pi//3)^(p...

The value of the integral `int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx`, is

A

`(pi//3-logtan3pi//2)`

B

`2(2pi//3-logtan5pi//12)`

C

`3(pi//2-logsinpi//12)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{x \sin x}{\cos^2 x} \, dx, \] we can start by rewriting the integrand. Notice that \[ \frac{\sin x}{\cos^2 x} = \tan x \sec x. \] Thus, we can express the integral as: \[ I = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} x \tan x \sec x \, dx. \] Next, we will use integration by parts. We set: - \( u = x \) (which implies \( du = dx \)), - \( dv = \tan x \sec x \, dx \). To find \( v \), we need to integrate \( \tan x \sec x \): \[ v = \int \tan x \sec x \, dx = \sec x. \] Now, applying integration by parts, we have: \[ I = \left[ x \sec x \right]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} - \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec x \, dx. \] Calculating the first term: 1. **Upper limit**: When \( x = \frac{\pi}{3} \): \[ \sec\left(\frac{\pi}{3}\right) = 2 \quad \text{(since } \sec x = \frac{1}{\cos x}\text{)} \] Thus, \[ \frac{\pi}{3} \cdot 2 = \frac{2\pi}{3}. \] 2. **Lower limit**: When \( x = -\frac{\pi}{3} \): \[ \sec\left(-\frac{\pi}{3}\right) = 2. \] Thus, \[ -\left(-\frac{\pi}{3} \cdot 2\right) = \frac{2\pi}{3}. \] Putting it all together, we have: \[ \left[ x \sec x \right]_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{2\pi}{3} - \left(-\frac{2\pi}{3}\right) = \frac{2\pi}{3} + \frac{2\pi}{3} = \frac{4\pi}{3}. \] Next, we need to evaluate the integral \( \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec x \, dx \). Using the property of the secant function, we know: \[ \int \sec x \, dx = \log |\sec x + \tan x| + C. \] Thus, we evaluate: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec x \, dx = \left[ \log |\sec x + \tan x| \right]_{-\frac{\pi}{3}}^{\frac{\pi}{3}}. \] Calculating the limits: 1. **Upper limit**: When \( x = \frac{\pi}{3} \): \[ \sec\left(\frac{\pi}{3}\right) = 2, \quad \tan\left(\frac{\pi}{3}\right) = \sqrt{3}. \] Thus, \[ \log |2 + \sqrt{3}|. \] 2. **Lower limit**: When \( x = -\frac{\pi}{3} \): \[ \sec\left(-\frac{\pi}{3}\right) = 2, \quad \tan\left(-\frac{\pi}{3}\right) = -\sqrt{3}. \] Thus, \[ \log |2 - \sqrt{3}|. \] Putting it together, we have: \[ \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sec x \, dx = \log |2 + \sqrt{3}| - \log |2 - \sqrt{3}| = \log \left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right). \] Now substituting back into our expression for \( I \): \[ I = \frac{4\pi}{3} - \log \left(\frac{2 + \sqrt{3}}{2 - \sqrt{3}}\right). \] To simplify this further, we can rationalize the logarithm: \[ \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{(2 + \sqrt{3})^2}{1} = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3}. \] Thus, we have: \[ I = \frac{4\pi}{3} - \log(7 + 4\sqrt{3}). \] Final answer: \[ I = \frac{4\pi}{3} - \log(7 + 4\sqrt{3}). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of the integral int_(pi//6)^(pi//3)(dx)/(1+tan^(5)x) is

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi//4)+1)dx is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. int(1//2)^(2) |log(10)x|dx equals to

    Text Solution

    |

  2. Evaluate: int(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a ...

    Text Solution

    |

  3. The value of the integral int(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx, i...

    Text Solution

    |

  4. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  5. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  6. If f(x)==|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  7. Evaluate lim(xto oo) ((int(0)^(x)e^(x^(2))dx)^(2))/(int(0)^(x)e^(2x^(2...

    Text Solution

    |

  8. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  9. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  10. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  11. The difference between the greatest and least values of the function p...

    Text Solution

    |

  12. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  13. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  14. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  15. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  16. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |

  17. If a lt int(0)^(2pi) (1)/(10+3 cos x)dx lt b. Then the ordered pair (a...

    Text Solution

    |

  18. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx ,is (a)0 (...

    Text Solution

    |

  19. The value of the integral int(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

    Text Solution

    |

  20. The value of the integral int(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

    Text Solution

    |