Home
Class 12
MATHS
The value of int(1)^(7sqrt(2)) (1)/(x(2x...

The value of `int_(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx` is

A

`log(6//5)`

B

`6log(6//5)`

C

`(1//7)log(6//5)`

D

`(1//12)log(6//5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{1}^{7\sqrt{2}} \frac{1}{x(2x^7 + 1)} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integrand. We can factor out \(x^7\) from the denominator: \[ I = \int_{1}^{7\sqrt{2}} \frac{1}{x \left( x^7(2 + \frac{1}{x^7}) \right)} \, dx = \int_{1}^{7\sqrt{2}} \frac{1}{x^8 \left( 2 + \frac{1}{x^7} \right)} \, dx. \] ### Step 2: Substitution Next, we will use the substitution: \[ t = 2 + \frac{1}{x^7}. \] Differentiating both sides gives: \[ dt = -\frac{7}{x^8} \, dx \quad \Rightarrow \quad dx = -\frac{x^8}{7} \, dt. \] ### Step 3: Change the Limits Now we need to change the limits of integration. - When \(x = 1\): \[ t = 2 + \frac{1}{1^7} = 3. \] - When \(x = 7\sqrt{2}\): \[ t = 2 + \frac{1}{(7\sqrt{2})^7} = 2 + \frac{1}{7^7 \cdot 2^{7/2}}. \] ### Step 4: Substitute in the Integral Substituting \(t\) and \(dx\) into the integral gives: \[ I = \int_{3}^{2 + \frac{1}{(7\sqrt{2})^7}} \frac{-1}{7t} \, dt. \] ### Step 5: Adjust the Integral Since we have a negative sign, we can switch the limits: \[ I = \frac{1}{7} \int_{2 + \frac{1}{(7\sqrt{2})^7}}^{3} \frac{1}{t} \, dt. \] ### Step 6: Evaluate the Integral The integral of \(\frac{1}{t}\) is \(\ln t\): \[ I = \frac{1}{7} \left[ \ln t \right]_{2 + \frac{1}{(7\sqrt{2})^7}}^{3} = \frac{1}{7} \left( \ln 3 - \ln \left( 2 + \frac{1}{(7\sqrt{2})^7} \right) \right). \] ### Step 7: Simplify Using Logarithmic Properties Using the property \(\ln a - \ln b = \ln \frac{a}{b}\): \[ I = \frac{1}{7} \ln \left( \frac{3}{2 + \frac{1}{(7\sqrt{2})^7}} \right). \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{7} \ln \left( \frac{3}{2 + \frac{1}{(7\sqrt{2})^7}} \right). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

The value of int_(1)^(3)(sqrt(1+(x-1)^(3))+(x^(2)-1)^(1/3)+1)dx is __________.

The value of int(sqrt(1+x))/(x)dx , is

Evaluate: int(x+1)/(sqrt(2x-1))\ dx

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

int(1)/((7x-2)^(2))dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a ...

    Text Solution

    |

  2. The value of the integral int(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx, i...

    Text Solution

    |

  3. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  4. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  5. If f(x)==|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  6. Evaluate lim(xto oo) ((int(0)^(x)e^(x^(2))dx)^(2))/(int(0)^(x)e^(2x^(2...

    Text Solution

    |

  7. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  8. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  9. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  10. The difference between the greatest and least values of the function p...

    Text Solution

    |

  11. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  12. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  13. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  14. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  15. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |

  16. If a lt int(0)^(2pi) (1)/(10+3 cos x)dx lt b. Then the ordered pair (a...

    Text Solution

    |

  17. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx ,is (a)0 (...

    Text Solution

    |

  18. The value of the integral int(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

    Text Solution

    |

  19. The value of the integral int(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

    Text Solution

    |

  20. Let I(1)=int(1)^(2)(x)/(sqrt(1+x^(2)))dx and I(2)=int(1)^(2)(1)/(x)dx....

    Text Solution

    |