Home
Class 12
MATHS
If f(x)==|{:(sinx+sin2x+sin3x,sin2x,sin3...

If f(x)=`=|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1):}|` then the value of `int_(0)^(pi//2) f(x)dx`, is

A

3

B

`2//3`

C

`1//3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the function \( f(x) \) defined by the determinant: \[ f(x) = \begin{vmatrix} \sin x + \sin 2x + \sin 3x & \sin 2x & \sin 3x \\ 3 + 4 \sin x & 3 & 4 \sin x \\ 1 + \sin x & \sin x & 1 \end{vmatrix} \] We will follow these steps: ### Step 1: Simplify the Determinant We will simplify the determinant using column operations. Let's denote the columns as \( C_1, C_2, C_3 \). 1. **Column Operation**: Replace \( C_1 \) with \( C_1 - C_2 - C_3 \): \[ C_1 \rightarrow C_1 - C_2 - C_3 \] This gives us: \[ f(x) = \begin{vmatrix} \sin x + \sin 2x + \sin 3x - \sin 2x - \sin 3x & \sin 2x & \sin 3x \\ (3 + 4 \sin x) - 3 - 4 \sin x & 3 & 4 \sin x \\ (1 + \sin x) - \sin x - 1 & \sin x & 1 \end{vmatrix} \] Simplifying the first column: \[ f(x) = \begin{vmatrix} \sin x & \sin 2x & \sin 3x \\ 4 \sin x & 3 & 4 \sin x \\ 0 & \sin x & 1 \end{vmatrix} \] ### Step 2: Calculate the Determinant Now we can calculate the determinant using the first column: \[ f(x) = \sin x \begin{vmatrix} 3 & 4 \sin x \\ \sin x & 1 \end{vmatrix} \] Calculating the 2x2 determinant: \[ = \sin x (3 \cdot 1 - 4 \sin x \cdot \sin x) = \sin x (3 - 4 \sin^2 x) \] Thus, we have: \[ f(x) = 3 \sin x - 4 \sin^3 x \] ### Step 3: Recognize the Function Notice that \( f(x) \) can be rewritten using the identity for sine: \[ f(x) = \sin 3x \] ### Step 4: Set Up the Integral Now we need to evaluate the integral: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = \int_0^{\frac{\pi}{2}} \sin 3x \, dx \] ### Step 5: Integrate The integral of \( \sin 3x \) is: \[ \int \sin 3x \, dx = -\frac{1}{3} \cos 3x + C \] Thus, we evaluate: \[ \int_0^{\frac{\pi}{2}} \sin 3x \, dx = \left[-\frac{1}{3} \cos 3x\right]_0^{\frac{\pi}{2}} \] Calculating the limits: - At \( x = \frac{\pi}{2} \): \[ -\frac{1}{3} \cos\left(3 \cdot \frac{\pi}{2}\right) = -\frac{1}{3} \cdot 0 = 0 \] - At \( x = 0 \): \[ -\frac{1}{3} \cos(0) = -\frac{1}{3} \cdot 1 = -\frac{1}{3} \] Thus, the integral evaluates to: \[ 0 - \left(-\frac{1}{3}\right) = \frac{1}{3} \] ### Final Answer The value of the integral is: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

sinx+sin3x+sin5x=0

sinx+sin3x+sin5x=0

f(x) = sinx - sin2x in [0,pi]

If sinx=1/(3) , then the value of sin3x is

The value of int(sinx +cosx)/(3+sin2x)dx , is

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

sinx/(sin2xsin3x)+sinx/(sin3xsin4x)+sinx/(sin4xsin5x)+....n terms is equal to

int sinx/sin(3x) dx=

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(1)^(7sqrt(2)) (1)/(x(2x^(7)+1)dx is

    Text Solution

    |

  2. The value of int(-1)^(3){|x-2|+[x]} dx, where [.] denotes the greatest...

    Text Solution

    |

  3. If f(x)==|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,s...

    Text Solution

    |

  4. Evaluate lim(xto oo) ((int(0)^(x)e^(x^(2))dx)^(2))/(int(0)^(x)e^(2x^(2...

    Text Solution

    |

  5. The value of int(1)^(4) e^(sqrt(x))dx, is

    Text Solution

    |

  6. The value of int(0)^(1000)e^(x-[x])dx, is ([.] denotes the greatest in...

    Text Solution

    |

  7. The value of the integral int(0)^(100) sin(x-[x])pidx, is

    Text Solution

    |

  8. The difference between the greatest and least values of the function p...

    Text Solution

    |

  9. The value of int0^1 (2^(2x+1)-5^(2x-1))/(10^(x))dx is

    Text Solution

    |

  10. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  11. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  12. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  13. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |

  14. If a lt int(0)^(2pi) (1)/(10+3 cos x)dx lt b. Then the ordered pair (a...

    Text Solution

    |

  15. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx ,is (a)0 (...

    Text Solution

    |

  16. The value of the integral int(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

    Text Solution

    |

  17. The value of the integral int(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

    Text Solution

    |

  18. Let I(1)=int(1)^(2)(x)/(sqrt(1+x^(2)))dx and I(2)=int(1)^(2)(1)/(x)dx....

    Text Solution

    |

  19. Evaluate the following integral: int0^(pi//4)(s in x+cosx)/(3+s in2x)d...

    Text Solution

    |

  20. The value of the integral int(0)^(pi//4) (sin theta+cos theta)/(9+16 s...

    Text Solution

    |