Home
Class 12
MATHS
If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(...

If `int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx`, then the value of k, is

A

1

B

n

C

`n//2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given in the question and find the value of \( k \) such that: \[ \int_{0}^{n\pi} f(\cos^2 x) \, dx = k \int_{0}^{\pi} f(\cos^2 x) \, dx \] ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_{0}^{n\pi} g(x) \, dx = n \int_{0}^{\pi} g(x) \, dx \] for any periodic function \( g(x) \) with period \( \pi \). In our case, \( g(x) = f(\cos^2 x) \). ### Step 2: Apply the property to our integral Since \( \cos^2 x \) is a periodic function with period \( \pi \), we can apply the property: \[ \int_{0}^{n\pi} f(\cos^2 x) \, dx = n \int_{0}^{\pi} f(\cos^2 x) \, dx \] ### Step 3: Set the equation Now we can set the left-hand side equal to the right-hand side, as given in the problem: \[ n \int_{0}^{\pi} f(\cos^2 x) \, dx = k \int_{0}^{\pi} f(\cos^2 x) \, dx \] ### Step 4: Solve for \( k \) To find \( k \), we can divide both sides of the equation by \( \int_{0}^{\pi} f(\cos^2 x) \, dx \) (assuming it is not zero): \[ k = n \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{n} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) cos^(2) x dx

Ifint_0^(npi)f(cos^2x)dx=kint_0^pif(cos^2x)dx , then find the value of k

int_(0)^(pi//4) cos^(2) x dx

int_(0)^(pi/2) cos 2x dx

int_(0)^( pi)(dx)/(1+cos^(2)x)

If f(x)=f(a+b-x) for all x in[a,b] and int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx , then the value of k, is

int_(0)^(pi//2) cos 3x dx

If l_(1)=int_(0)^(npi)f(|cosx|)dx and l_(2)=int_(0)^(5pi)f(|cosx|)dx , then

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

int_(0)^(pi) x sin x cos^(2)x\ dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

    Text Solution

    |

  2. The value of int(0)^(16pi//3) |sinx|dx is

    Text Solution

    |

  3. If int(0)^(npi) f(cos^(2)x)dx=k int(0)^(pi) f(cos^(2)x)dx, then the va...

    Text Solution

    |

  4. The value of int(-pi)^(pi) sinx f(cosx)dx is

    Text Solution

    |

  5. If a lt int(0)^(2pi) (1)/(10+3 cos x)dx lt b. Then the ordered pair (a...

    Text Solution

    |

  6. The value of the integral int0^oo(xlogx)/((1+x^2)^2)dx ,is (a)0 (...

    Text Solution

    |

  7. The value of the integral int(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

    Text Solution

    |

  8. The value of the integral int(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

    Text Solution

    |

  9. Let I(1)=int(1)^(2)(x)/(sqrt(1+x^(2)))dx and I(2)=int(1)^(2)(1)/(x)dx....

    Text Solution

    |

  10. Evaluate the following integral: int0^(pi//4)(s in x+cosx)/(3+s in2x)d...

    Text Solution

    |

  11. The value of the integral int(0)^(pi//4) (sin theta+cos theta)/(9+16 s...

    Text Solution

    |

  12. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin x^3dx=F(k)-F...

    Text Solution

    |

  13. If I=int(-1)^(1)([x^(2)]+log((2+x)/(2-x)))dx where [x] denotes the gre...

    Text Solution

    |

  14. The value of int(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal t...

    Text Solution

    |

  15. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  16. The value of I=int(0)^(pi//2) (1)/(1+cosx)dx is

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  19. The value of the integral int(0)^(2pi)(sin2 theta)/(a-b cos theta)d ...

    Text Solution

    |

  20. The value of the integral I=int(0)^(1)x(1-x)^(n)dx is equal to

    Text Solution

    |