Home
Class 12
MATHS
The value of int(-pi//2)^(pi//2)(x^(2)+x...

The value of `int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx` is equal to

A

0

B

2

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^2 + x \cos x + \tan^5 x + 1 \right) dx \), we will analyze each term in the integrand to determine if they are even or odd functions. ### Step 1: Split the Integral We can express the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^5 x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx \] ### Step 2: Identify Even and Odd Functions 1. **For \( x^2 \)**: - \( f(-x) = (-x)^2 = x^2 = f(x) \) (even function) 2. **For \( x \cos x \)**: - \( f(-x) = -x \cos(-x) = -x \cos x = -f(x) \) (odd function) 3. **For \( \tan^5 x \)**: - \( f(-x) = \tan(-x)^5 = (-\tan x)^5 = -\tan^5 x = -f(x) \) (odd function) 4. **For \( 1 \)**: - \( f(-x) = 1 = f(x) \) (even function) ### Step 3: Apply Properties of Integrals Using the properties of integrals: - The integral of an odd function over a symmetric interval around zero is zero. - The integral of an even function can be simplified as: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx + 0 + 0 + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx \] This simplifies to: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx \] ### Step 4: Calculate the Integrals 1. **Calculate \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx \)**: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \, dx = 2 \int_{0}^{\frac{\pi}{2}} x^2 \, dx = 2 \left[ \frac{x^3}{3} \right]_{0}^{\frac{\pi}{2}} = 2 \left( \frac{(\frac{\pi}{2})^3}{3} - 0 \right) = 2 \cdot \frac{\pi^3}{24} = \frac{\pi^3}{12} \] 2. **Calculate \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx \)**: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx = 2 \int_{0}^{\frac{\pi}{2}} 1 \, dx = 2 \left[ x \right]_{0}^{\frac{\pi}{2}} = 2 \cdot \frac{\pi}{2} = \pi \] ### Step 5: Combine Results Now, combine the results: \[ I = \frac{\pi^3}{12} + \pi \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi^3}{12} + \pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

The value of int_(-pi//2)^(pi//2)(x^3+x\ cos x+tan^5x+1)dx , is a. 2 b. pi c. 0 d. 1

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

int_(-pi/2)^(pi/2)cosx dx

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

Choose the correct answerThe Value of int_(-pi/2)^(pi/2)(x^3+xcosx+tan^5x+1)dx is(A) 0 (B) 2 (C) pi (D) 1

Evaluate: int_(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

int_(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dx has the value

The value of int_(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin x^3dx=F(k)-F...

    Text Solution

    |

  2. If I=int(-1)^(1)([x^(2)]+log((2+x)/(2-x)))dx where [x] denotes the gre...

    Text Solution

    |

  3. The value of int(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal t...

    Text Solution

    |

  4. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  5. The value of I=int(0)^(pi//2) (1)/(1+cosx)dx is

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  8. The value of the integral int(0)^(2pi)(sin2 theta)/(a-b cos theta)d ...

    Text Solution

    |

  9. The value of the integral I=int(0)^(1)x(1-x)^(n)dx is equal to

    Text Solution

    |

  10. The value of the integral int(0)^(3alpha) cosec (x-alpha)cosec(x-2al...

    Text Solution

    |

  11. The value of the integral int(0)^(pi)(sin 2k x)/(sin x)dx, where k in...

    Text Solution

    |

  12. The value of the integral int0^1(dx)/(x^2+2xcosalpha+1) is equal to si...

    Text Solution

    |

  13. The greater value of F(x)=int(1)^(x) |t|dt on the interval [-1//2,1//2...

    Text Solution

    |

  14. The value of the integral int(0)^(pi//2) |sin x-cos x|dx, is

    Text Solution

    |

  15. The value of the integral int(-pi//4)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  16. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  17. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  18. Evaluate: int(-pi)^pi(cosa x+s in b x)^2dx

    Text Solution

    |

  19. The value of the definite integral int0^1(1+e^-x^2)dx (b) 2 1+e^...

    Text Solution

    |

  20. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |