Home
Class 12
MATHS
The value of I=int(0)^(pi//2) (1)/(1+cos...

The value of `I=int_(0)^(pi//2) (1)/(1+cosx)dx` is

A

`(pi)/(4)`

B

`(pi)/(2)`

C

1

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We can use the trigonometric identity \( \cos x = 2 \cos^2\left(\frac{x}{2}\right) - 1 \) to rewrite the denominator: \[ 1 + \cos x = 1 + (2 \cos^2\left(\frac{x}{2}\right) - 1) = 2 \cos^2\left(\frac{x}{2}\right) \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{1}{2 \cos^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Factor Out the Constant We can factor out the constant \( \frac{1}{2} \) from the integral: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sec^2\left(\frac{x}{2}\right) \, dx \] ### Step 3: Change of Variable Next, we perform a change of variable. Let \( u = \frac{x}{2} \), then \( dx = 2 \, du \). The limits change as follows: - When \( x = 0 \), \( u = 0 \) - When \( x = \frac{\pi}{2} \), \( u = \frac{\pi}{4} \) Now, we can rewrite the integral: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec^2(u) \cdot 2 \, du = \int_{0}^{\frac{\pi}{4}} \sec^2(u) \, du \] ### Step 4: Integrate The integral of \( \sec^2(u) \) is \( \tan(u) \): \[ I = \left[ \tan(u) \right]_{0}^{\frac{\pi}{4}} = \tan\left(\frac{\pi}{4}\right) - \tan(0) \] ### Step 5: Evaluate the Limits Now we evaluate the limits: \[ I = \tan\left(\frac{\pi}{4}\right) - \tan(0) = 1 - 0 = 1 \] ### Final Answer Thus, the value of the integral \( I \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

The value of int_(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

The value of int_(0)^(pi//2)(cosxdx)/(1+cosx+sinx) is equal to

The value of I=int_(0)^(pi//2)((sinx+cos)^(2))/(sqrt(1+sin2x))dx is

The value of int_0^(pi//2)cosx\ e^(sin x)dx\ i s a. 1 b. e-1 c. 0 d. -1

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. If int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1)) , then the value of int_(0)^(pi)(dx)/((sqrt(10)-cosx)^3) is

The value of int_(-pi)^(pi) sinx f(cosx)dx is

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of I=int_0^(pi/2) (sinx+cosx)^2/sqrt(1+sin2x)dx is (A) 2 (B) 1 (C) 0 (D) 3

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal t...

    Text Solution

    |

  2. Evaluate: int(-1)^4f(x)dx=4a n dint2^4(3-f(x))dx=7, then find the val...

    Text Solution

    |

  3. The value of I=int(0)^(pi//2) (1)/(1+cosx)dx is

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The value of integral underset(a)overset(b)int(|x|)/(x)dx, a lt b is :

    Text Solution

    |

  6. The value of the integral int(0)^(2pi)(sin2 theta)/(a-b cos theta)d ...

    Text Solution

    |

  7. The value of the integral I=int(0)^(1)x(1-x)^(n)dx is equal to

    Text Solution

    |

  8. The value of the integral int(0)^(3alpha) cosec (x-alpha)cosec(x-2al...

    Text Solution

    |

  9. The value of the integral int(0)^(pi)(sin 2k x)/(sin x)dx, where k in...

    Text Solution

    |

  10. The value of the integral int0^1(dx)/(x^2+2xcosalpha+1) is equal to si...

    Text Solution

    |

  11. The greater value of F(x)=int(1)^(x) |t|dt on the interval [-1//2,1//2...

    Text Solution

    |

  12. The value of the integral int(0)^(pi//2) |sin x-cos x|dx, is

    Text Solution

    |

  13. The value of the integral int(-pi//4)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  14. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  15. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  16. Evaluate: int(-pi)^pi(cosa x+s in b x)^2dx

    Text Solution

    |

  17. The value of the definite integral int0^1(1+e^-x^2)dx (b) 2 1+e^...

    Text Solution

    |

  18. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  19. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  20. If I(1)=int(0)^(x) e^("zx ")e^(-z^(2))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |