Home
Class 12
MATHS
The greater value of F(x)=int(1)^(x) |t|...

The greater value of `F(x)=int_(1)^(x) |t|dt` on the interval `[-1//2,1//2]`, is

A

`(3)/(8)`

B

`(1)/(2)`

C

`-(3)/(8)`

D

`-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the greater value of the function \( F(x) = \int_{1}^{x} |t| \, dt \) on the interval \([-1/2, 1/2]\), we will follow these steps: ### Step 1: Analyze the Integral The function \( |t| \) is defined as: - \( |t| = t \) when \( t \geq 0 \) - \( |t| = -t \) when \( t < 0 \) Since we are integrating from 1 to \( x \), we need to consider the value of \( x \) in relation to 1. ### Step 2: Determine the Cases for Integration 1. **Case 1:** If \( x \geq 1 \), then \( |t| = t \) for all \( t \) in the interval \([1, x]\). \[ F(x) = \int_{1}^{x} t \, dt \] 2. **Case 2:** If \( x < 1 \), then we need to consider the point where \( t \) becomes negative. Since \( x \) is in the interval \([-1/2, 1/2]\), we will need to evaluate \( F(x) \) for \( x < 0 \) and \( x \geq 0 \). ### Step 3: Calculate the Integral for \( x \geq 1 \) For \( x \geq 1 \): \[ F(x) = \int_{1}^{x} t \, dt = \left[ \frac{t^2}{2} \right]_{1}^{x} = \frac{x^2}{2} - \frac{1^2}{2} = \frac{x^2}{2} - \frac{1}{2} \] ### Step 4: Calculate the Integral for \( x < 1 \) For \( x < 1 \) and \( x \geq 0 \): \[ F(x) = \int_{1}^{x} |t| \, dt = \int_{1}^{0} t \, dt + \int_{0}^{x} -t \, dt \] This integral can be split as: \[ F(x) = -\int_{0}^{1} t \, dt + \int_{0}^{x} -t \, dt = -\left[ \frac{t^2}{2} \right]_{0}^{1} + \left[ -\frac{t^2}{2} \right]_{0}^{x} \] Calculating these gives: \[ F(x) = -\frac{1^2}{2} + \left(-\frac{x^2}{2}\right) = -\frac{1}{2} - \frac{x^2}{2} \] ### Step 5: Evaluate \( F(x) \) at the Endpoints and Critical Points Now we evaluate \( F(x) \) at the endpoints of the interval \([-1/2, 1/2]\): 1. **At \( x = -1/2 \)**: \[ F(-1/2) = -\frac{1}{2} - \frac{(-1/2)^2}{2} = -\frac{1}{2} - \frac{1/8} = -\frac{4}{8} - \frac{1}{8} = -\frac{5}{8} \] 2. **At \( x = 0 \)**: \[ F(0) = -\frac{1}{2} - \frac{0^2}{2} = -\frac{1}{2} \] 3. **At \( x = 1/2 \)**: \[ F(1/2) = -\frac{1}{2} - \frac{(1/2)^2}{2} = -\frac{1}{2} - \frac{1/8} = -\frac{4}{8} - \frac{1}{8} = -\frac{5}{8} \] ### Step 6: Compare Values Now we compare the values: - \( F(-1/2) = -\frac{5}{8} \) - \( F(0) = -\frac{1}{2} = -\frac{4}{8} \) - \( F(1/2) = -\frac{5}{8} \) The maximum value among these is: \[ -\frac{4}{8} > -\frac{5}{8} \] ### Conclusion The greater value of \( F(x) \) on the interval \([-1/2, 1/2]\) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The greater value of (x) =int_(-1//2)^(x) |t|dt on the interval [-1//2,1//2] , is

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

The maximum value of f(x) =int_(0)^(1) t sin (x+pi t)dt is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is:

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(0)^(pi)(sin 2k x)/(sin x)dx, where k in...

    Text Solution

    |

  2. The value of the integral int0^1(dx)/(x^2+2xcosalpha+1) is equal to si...

    Text Solution

    |

  3. The greater value of F(x)=int(1)^(x) |t|dt on the interval [-1//2,1//2...

    Text Solution

    |

  4. The value of the integral int(0)^(pi//2) |sin x-cos x|dx, is

    Text Solution

    |

  5. The value of the integral int(-pi//4)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  6. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  7. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  8. Evaluate: int(-pi)^pi(cosa x+s in b x)^2dx

    Text Solution

    |

  9. The value of the definite integral int0^1(1+e^-x^2)dx (b) 2 1+e^...

    Text Solution

    |

  10. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  11. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  12. If I(1)=int(0)^(x) e^("zx ")e^(-z^(2))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  13. int(0)^(1//2) |sin pi x|dx is equal to

    Text Solution

    |

  14. If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt, then discuss whether even or ...

    Text Solution

    |

  15. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  16. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  17. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  18. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  19. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  20. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |