Home
Class 12
MATHS
The value of the integral I=int(1)^(oo) ...

The value of the integral `I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx`, is

A

0

B

`(2)/(3)`

C

`(4)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{\infty} \frac{x^2 - 2}{x^3 \sqrt{x^2 - 1}} \, dx \), we will use the substitution method and properties of definite integrals. ### Step 1: Substitution Let \( x = \frac{1}{t} \). Then, we differentiate to find \( dx \): \[ dx = -\frac{1}{t^2} \, dt \] Next, we change the limits of integration. When \( x = 1 \), \( t = 1 \) and when \( x \to \infty \), \( t \to 0 \). ### Step 2: Change the Integral Substituting \( x \) and \( dx \) into the integral, we have: \[ I = \int_{1}^{0} \frac{\left(\frac{1}{t}\right)^2 - 2}{\left(\frac{1}{t}\right)^3 \sqrt{\left(\frac{1}{t}\right)^2 - 1}} \left(-\frac{1}{t^2}\right) dt \] This simplifies to: \[ I = \int_{0}^{1} \frac{\frac{1}{t^2} - 2}{\frac{1}{t^3} \sqrt{\frac{1}{t^2} - 1}} \frac{1}{t^2} dt \] ### Step 3: Simplifying the Expression We can simplify the expression inside the integral: \[ I = \int_{0}^{1} \frac{1 - 2t^2}{\frac{1}{t^4} \sqrt{1 - t^2}} dt \] This becomes: \[ I = \int_{0}^{1} \frac{(1 - 2t^2) t^4}{\sqrt{1 - t^2}} dt \] ### Step 4: Factor Out the Negative Sign Now, we can factor out the negative sign: \[ I = -\int_{0}^{1} \frac{1 - 2t^2}{\sqrt{1 - t^2}} dt \] ### Step 5: Change the Limits Changing the limits of integration gives: \[ I = \int_{0}^{1} \frac{1 - 2t^2}{\sqrt{1 - t^2}} dt \] ### Step 6: Evaluate the Integral Now, we can split the integral: \[ I = \int_{0}^{1} \frac{1}{\sqrt{1 - t^2}} dt - 2 \int_{0}^{1} \frac{t^2}{\sqrt{1 - t^2}} dt \] The first integral evaluates to: \[ \int_{0}^{1} \frac{1}{\sqrt{1 - t^2}} dt = \frac{\pi}{2} \] For the second integral, we can use the substitution \( t = \sin \theta \): \[ \int_{0}^{1} \frac{t^2}{\sqrt{1 - t^2}} dt = \int_{0}^{\frac{\pi}{2}} \sin^2 \theta d\theta = \frac{\pi}{4} \] ### Step 7: Combine Results Putting it all together: \[ I = \frac{\pi}{2} - 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of the integral int_-2^2(dx)/(x+1)^3 is

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(0)^(pi//2) |sin x-cos x|dx, is

    Text Solution

    |

  2. The value of the integral int(-pi//4)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  3. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  4. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  5. Evaluate: int(-pi)^pi(cosa x+s in b x)^2dx

    Text Solution

    |

  6. The value of the definite integral int0^1(1+e^-x^2)dx (b) 2 1+e^...

    Text Solution

    |

  7. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  8. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  9. If I(1)=int(0)^(x) e^("zx ")e^(-z^(2))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  10. int(0)^(1//2) |sin pi x|dx is equal to

    Text Solution

    |

  11. If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt, then discuss whether even or ...

    Text Solution

    |

  12. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  13. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  14. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  15. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  16. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  17. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  18. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  19. int(ac)^(bc)f(x)dx, where c ne 0, is also equal to :

    Text Solution

    |

  20. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |