Home
Class 12
MATHS
int(0)^(1) |sin 2pi x|dx id equal to...

`int_(0)^(1) |sin 2pi x|dx` id equal to

A

0

B

`-(1)/(pi)`

C

`(1)/(pi)`

D

`(2)/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{1} |\sin(2\pi x)| \, dx \), we will follow these steps: ### Step 1: Identify the behavior of \( \sin(2\pi x) \) The function \( \sin(2\pi x) \) oscillates between -1 and 1 as \( x \) varies from 0 to 1. Specifically, it completes one full cycle from 0 to 1. The sine function is positive in the intervals where \( 2\pi x \) is in the first and second quadrants, which corresponds to \( x \) in the intervals \( [0, \frac{1}{4}] \) and \( [\frac{1}{2}, \frac{3}{4}] \). It is negative in the intervals \( [\frac{1}{4}, \frac{1}{2}] \) and \( [\frac{3}{4}, 1] \). ### Step 2: Break the integral into intervals We can break the integral into parts where the sine function is either positive or negative: \[ \int_{0}^{1} |\sin(2\pi x)| \, dx = \int_{0}^{\frac{1}{4}} \sin(2\pi x) \, dx + \int_{\frac{1}{4}}^{\frac{1}{2}} -\sin(2\pi x) \, dx + \int_{\frac{1}{2}}^{\frac{3}{4}} \sin(2\pi x) \, dx + \int_{\frac{3}{4}}^{1} -\sin(2\pi x) \, dx \] ### Step 3: Evaluate each integral 1. **For \( \int_{0}^{\frac{1}{4}} \sin(2\pi x) \, dx \)**: \[ = \left[-\frac{1}{2\pi} \cos(2\pi x)\right]_{0}^{\frac{1}{4}} = -\frac{1}{2\pi} \left( \cos\left(\frac{\pi}{2}\right) - \cos(0) \right) = -\frac{1}{2\pi} (0 - 1) = \frac{1}{2\pi} \] 2. **For \( \int_{\frac{1}{4}}^{\frac{1}{2}} -\sin(2\pi x) \, dx \)**: \[ = -\left[-\frac{1}{2\pi} \cos(2\pi x)\right]_{\frac{1}{4}}^{\frac{1}{2}} = \frac{1}{2\pi} \left( \cos(\pi) - \cos\left(\frac{\pi}{2}\right) \right) = \frac{1}{2\pi} (-1 - 0) = -\frac{1}{2\pi} \] 3. **For \( \int_{\frac{1}{2}}^{\frac{3}{4}} \sin(2\pi x) \, dx \)**: \[ = \left[-\frac{1}{2\pi} \cos(2\pi x)\right]_{\frac{1}{2}}^{\frac{3}{4}} = -\frac{1}{2\pi} \left( \cos\left(\frac{3\pi}{2}\right) - \cos(\pi) \right) = -\frac{1}{2\pi} (0 - (-1)) = \frac{1}{2\pi} \] 4. **For \( \int_{\frac{3}{4}}^{1} -\sin(2\pi x) \, dx \)**: \[ = -\left[-\frac{1}{2\pi} \cos(2\pi x)\right]_{\frac{3}{4}}^{1} = \frac{1}{2\pi} \left( \cos(2\pi) - \cos\left(\frac{3\pi}{2}\right) \right) = \frac{1}{2\pi} (1 - 0) = \frac{1}{2\pi} \] ### Step 4: Combine the results Now, we combine all the evaluated integrals: \[ \int_{0}^{1} |\sin(2\pi x)| \, dx = \frac{1}{2\pi} - \frac{1}{2\pi} + \frac{1}{2\pi} + \frac{1}{2\pi} = \frac{2}{2\pi} = \frac{1}{\pi} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{1} |\sin(2\pi x)| \, dx \) is: \[ \frac{1}{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1//2) |sin pi x|dx is equal to

int_(0)^(pi) sin 3x dx

int_(0)^(pi/4) sin 2x dx

int_(0)^(pi) [2sin x]dx=

int_(0)^(pi) x sin^(2) x dx

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi//8) tan^(2) 2x dx is equal to

int_0^(2pi) sin^2x dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(-pi//4)^(pi//4) sin^(-4)x dx, is

    Text Solution

    |

  2. The value of the integral I=int(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))...

    Text Solution

    |

  3. int(0)^(1) |sin 2pi x|dx id equal to

    Text Solution

    |

  4. Evaluate: int(-pi)^pi(cosa x+s in b x)^2dx

    Text Solution

    |

  5. The value of the definite integral int0^1(1+e^-x^2)dx (b) 2 1+e^...

    Text Solution

    |

  6. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  7. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  8. If I(1)=int(0)^(x) e^("zx ")e^(-z^(2))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  9. int(0)^(1//2) |sin pi x|dx is equal to

    Text Solution

    |

  10. If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt, then discuss whether even or ...

    Text Solution

    |

  11. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  12. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  13. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  14. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  15. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  16. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  17. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  18. int(ac)^(bc)f(x)dx, where c ne 0, is also equal to :

    Text Solution

    |

  19. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  20. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |