Home
Class 12
MATHS
If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx...

If `I=int_(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0`, then I equals

A

`pi`

B

`(pi)/(2)`

C

`a pi`

D

`a(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\pi}^{\pi} \frac{\sin^2 x}{1 + a^x} \, dx \), where \( a > 0 \), we can use the property of definite integrals. ### Step 1: Use the Symmetry Property of Integrals We know that: \[ I = \int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(a + b - x) \, dx \] In our case, we can express \( I \) as: \[ I = \int_{-\pi}^{\pi} \frac{\sin^2(-x)}{1 + a^{-x}} \, dx \] Since \( \sin(-x) = -\sin(x) \), we have \( \sin^2(-x) = \sin^2(x) \). Thus: \[ I = \int_{-\pi}^{\pi} \frac{\sin^2 x}{1 + \frac{1}{a^x}} \, dx \] ### Step 2: Simplify the Integral We can rewrite \( \frac{1}{a^x} \) as \( \frac{1}{a^x} = a^{-x} \), hence: \[ I = \int_{-\pi}^{\pi} \frac{\sin^2 x}{1 + \frac{1}{a^x}} \, dx = \int_{-\pi}^{\pi} \frac{\sin^2 x \cdot a^x}{a^x + 1} \, dx \] ### Step 3: Add the Two Expressions for \( I \) Now, we have two expressions for \( I \): 1. \( I = \int_{-\pi}^{\pi} \frac{\sin^2 x}{1 + a^x} \, dx \) (Equation 1) 2. \( I = \int_{-\pi}^{\pi} \frac{a^x \sin^2 x}{1 + a^x} \, dx \) (Equation 2) Adding these two equations gives: \[ 2I = \int_{-\pi}^{\pi} \left( \frac{\sin^2 x}{1 + a^x} + \frac{a^x \sin^2 x}{1 + a^x} \right) \, dx \] \[ 2I = \int_{-\pi}^{\pi} \frac{\sin^2 x (1 + a^x)}{1 + a^x} \, dx = \int_{-\pi}^{\pi} \sin^2 x \, dx \] ### Step 4: Evaluate the Integral of \( \sin^2 x \) We know that: \[ \int_{-\pi}^{\pi} \sin^2 x \, dx = 2 \int_{0}^{\pi} \sin^2 x \, dx \] Using the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \): \[ \int_{0}^{\pi} \sin^2 x \, dx = \int_{0}^{\pi} \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \left[ x - \frac{\sin(2x)}{2} \right]_{0}^{\pi} \] Calculating this, we find: \[ = \frac{1}{2} \left[ \pi - 0 \right] = \frac{\pi}{2} \] Thus: \[ \int_{-\pi}^{\pi} \sin^2 x \, dx = 2 \cdot \frac{\pi}{2} = \pi \] ### Step 5: Solve for \( I \) Now substituting back, we have: \[ 2I = \pi \implies I = \frac{\pi}{2} \] ### Final Answer Therefore, the value of \( I \) is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx,a gt 0 , is

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

I=int_(0)^(2pi)(1)/(1+e^(sinx))dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

int_(0)^(pi) [2sin x]dx=

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

int_(0)^(pi//6) sqrt(1-sin 2x) dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-pi)^pi(cosa x+s in b x)^2dx

    Text Solution

    |

  2. The value of the definite integral int0^1(1+e^-x^2)dx (b) 2 1+e^...

    Text Solution

    |

  3. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  4. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  5. If I(1)=int(0)^(x) e^("zx ")e^(-z^(2))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  6. int(0)^(1//2) |sin pi x|dx is equal to

    Text Solution

    |

  7. If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt, then discuss whether even or ...

    Text Solution

    |

  8. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  9. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  10. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  11. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  12. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  13. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  14. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  15. int(ac)^(bc)f(x)dx, where c ne 0, is also equal to :

    Text Solution

    |

  16. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  17. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  18. The value of int(0)^(2) | cos ""(pi)/( 2) t|dt is equal to

    Text Solution

    |

  19. If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  20. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |