Home
Class 12
MATHS
If I(1)=int(0)^(x) e^("zx ")e^(-z^(2))dz...

If `I_(1)=int_(0)^(x) e^("zx ")e^(-z^(2))dz` and `I_(2)=int_(0)^(x) e^(-z^(2)//4)dz`, them

A

`I_(1)=e^(x)I_(2)`

B

`I_(1)=e^(x^(2))I_(2)`

C

`I_(1)=e^(x^(2)//2)I_(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the integrals \( I_1 \) and \( I_2 \): 1. **Define the integrals**: \[ I_1 = \int_0^x e^{zx} e^{-z^2} \, dz \] \[ I_2 = \int_0^x e^{-\frac{z^2}{4}} \, dz \] 2. **Manipulate \( I_1 \)**: We can rewrite \( I_1 \) by multiplying and dividing the integrand by \( e^{\frac{x^2}{4}} \): \[ I_1 = e^{\frac{x^2}{4}} \int_0^x e^{zx - \frac{x^2}{4}} e^{-z^2} \, dz \] This allows us to factor out \( e^{\frac{x^2}{4}} \). 3. **Change of variables**: Let's perform a change of variables in the integral. Set \( t = \frac{x}{2} - z \), then \( dz = -dt \). The limits change as follows: - When \( z = 0 \), \( t = \frac{x}{2} \) - When \( z = x \), \( t = -\frac{x}{2} \) Thus, we can rewrite the integral: \[ I_1 = e^{\frac{x^2}{4}} \int_{\frac{x}{2}}^{-\frac{x}{2}} e^{x(\frac{x}{2} - t)} e^{-\left(\frac{x}{2} - t\right)^2} (-dt) \] This simplifies to: \[ I_1 = e^{\frac{x^2}{4}} \int_{-\frac{x}{2}}^{\frac{x}{2}} e^{xt} e^{-\left(\frac{x}{2} - t\right)^2} dt \] 4. **Relate \( I_1 \) to \( I_2 \)**: Notice that the integral \( I_2 \) can be expressed in terms of the Gaussian integral: \[ I_2 = \int_0^x e^{-\frac{z^2}{4}} \, dz \] We can relate \( I_1 \) and \( I_2 \) by recognizing that the integrals have similar forms. 5. **Final relationship**: After simplification, we find: \[ I_1 = e^{\frac{x^2}{4}} I_2 \] 6. **Conclusion**: Therefore, the relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = e^{\frac{x^2}{4}} I_2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) e^(x) dx

int_(0)^(2)e^(x)\ dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

int_(0)^(1)(dx)/(e^(x)+e^(-x))

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-(1//2)x^(2))dx . The greatest of these integrals, is

int_(0)^(2) (e^(-1//x))/(x^(2)) dx

int_(0)^(1)x e^(x^(2)) dx

Prove that int_(0)^(x)e^(xt)e^(-t^(2))dt=e^(x^(2)//4)int_(0)^(x)e^(-t^(2)//4)dt .

If I_(1)=int_(0)^(1)(dx)/(e^(x)(1+x)) and I_(2)=int_(0)^(pi//4)(e^(tan^(7)theta)sintheta)/((2-tan^(2)theta)cos^(3)theta d theta ,then find the value of (l_(1))/(l_(2)) .

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If I=int(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0, then I equals

    Text Solution

    |

  2. If n is an odd natural number, then int(-pi//6)^(pi//6) (pi+4x^(n))/...

    Text Solution

    |

  3. If I(1)=int(0)^(x) e^("zx ")e^(-z^(2))dz and I(2)=int(0)^(x) e^(-z^(2)...

    Text Solution

    |

  4. int(0)^(1//2) |sin pi x|dx is equal to

    Text Solution

    |

  5. If f(x)=int(0)^(x) log ((1-t)/(1+t)) dt, then discuss whether even or ...

    Text Solution

    |

  6. int(1//3)^(3) (1)/(x)sin ((1)/(x)-x)dx is equal to

    Text Solution

    |

  7. If F(x)=int(x^(2))^(x^(3)) log t dt (x gt 0), then F'(x) equals

    Text Solution

    |

  8. If I=int(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

    Text Solution

    |

  9. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  10. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  11. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  12. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  13. int(ac)^(bc)f(x)dx, where c ne 0, is also equal to :

    Text Solution

    |

  14. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  15. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  16. The value of int(0)^(2) | cos ""(pi)/( 2) t|dt is equal to

    Text Solution

    |

  17. If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  18. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  19. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  20. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |