Home
Class 12
MATHS
If int(0)^(pi//2) cos^(n)x sin^(n) x dx=...

If `int_(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int_(0)^(pi//2) sin^(n)x" dx"`, then `lambda=`

A

`(1)/(2^(n-1))`

B

`(1)/(2^(n+1))`

C

`(1)/(2^(n))`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of \(\lambda\) such that: \[ \int_{0}^{\frac{\pi}{2}} \cos^n x \sin^n x \, dx = \lambda \int_{0}^{\frac{\pi}{2}} \sin^n x \, dx \] ### Step-by-Step Solution: 1. **Start with the Left-Hand Side (LHS)**: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^n x \sin^n x \, dx \] 2. **Multiply and Divide by \(2^n\)**: \[ I = \frac{1}{2^n} \int_{0}^{\frac{\pi}{2}} 2^n \cos^n x \sin^n x \, dx \] 3. **Use the Identity \(2 \sin x \cos x = \sin(2x)\)**: \[ I = \frac{1}{2^n} \int_{0}^{\frac{\pi}{2}} \left(2 \sin x \cos x\right)^n \, dx = \frac{1}{2^n} \int_{0}^{\frac{\pi}{2}} \sin^n(2x) \, dx \] 4. **Change of Variables**: Let \(t = 2x\), then \(dt = 2dx\) or \(dx = \frac{dt}{2}\). Also, change the limits: when \(x = 0\), \(t = 0\) and when \(x = \frac{\pi}{2}\), \(t = \pi\). \[ I = \frac{1}{2^n} \cdot \frac{1}{2} \int_{0}^{\pi} \sin^n t \, dt = \frac{1}{2^{n+1}} \int_{0}^{\pi} \sin^n t \, dt \] 5. **Split the Integral**: The integral from \(0\) to \(\pi\) can be split into two parts: \[ \int_{0}^{\pi} \sin^n t \, dt = \int_{0}^{\frac{\pi}{2}} \sin^n t \, dt + \int_{\frac{\pi}{2}}^{\pi} \sin^n t \, dt \] Using the property \(\sin(\pi - t) = \sin t\), we find: \[ \int_{\frac{\pi}{2}}^{\pi} \sin^n t \, dt = \int_{0}^{\frac{\pi}{2}} \sin^n t \, dt \] Thus, \[ \int_{0}^{\pi} \sin^n t \, dt = 2 \int_{0}^{\frac{\pi}{2}} \sin^n t \, dt \] 6. **Substituting Back**: Now substituting back into our expression for \(I\): \[ I = \frac{1}{2^{n+1}} \cdot 2 \int_{0}^{\frac{\pi}{2}} \sin^n t \, dt = \frac{1}{2^n} \int_{0}^{\frac{\pi}{2}} \sin^n t \, dt \] 7. **Comparing with the Right-Hand Side (RHS)**: We have: \[ I = \lambda \int_{0}^{\frac{\pi}{2}} \sin^n x \, dx \] Therefore, comparing both sides: \[ \frac{1}{2^n} \int_{0}^{\frac{\pi}{2}} \sin^n x \, dx = \lambda \int_{0}^{\frac{\pi}{2}} \sin^n x \, dx \] 8. **Solving for \(\lambda\)**: Dividing both sides by \(\int_{0}^{\frac{\pi}{2}} \sin^n x \, dx\) (assuming it is not zero): \[ \lambda = \frac{1}{2^n} \] ### Final Answer: \[ \lambda = \frac{1}{2^n} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi//2) sin ^(4) x dx

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//2) (a cos^(2) x+b sin^(2) x) dx

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int_(0)^(pi/4) sin 2x dx

Evaluate : int_(0)^(pi//2) sin x dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If I=int(0)^(1) (dx)/(1+x^(4)), then

    Text Solution

    |

  2. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  3. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  4. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  5. int(ac)^(bc)f(x)dx, where c ne 0, is also equal to :

    Text Solution

    |

  6. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  7. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  8. The value of int(0)^(2) | cos ""(pi)/( 2) t|dt is equal to

    Text Solution

    |

  9. If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  10. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  11. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  12. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  13. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  14. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  15. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  16. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  17. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  18. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  19. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  20. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |