Home
Class 12
MATHS
The value of int(1//e )^(e )(|log x|)/(x...

The value of `int_(1//e )^(e )(|log x|)/(x^(2))dx`, is

A

2

B

`(2)/(e )`

C

`2(1-(1)/(e ))`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{1}{e}}^{e} \frac{|\log x|}{x^2} \, dx \), we will break it down into two parts based on the behavior of the logarithmic function. ### Step 1: Analyze the absolute value of the logarithm We know that: - For \( x \in \left(0, 1\right) \), \( \log x < 0 \) (hence \( |\log x| = -\log x \)). - For \( x \in \left(1, \infty\right) \), \( \log x > 0 \) (hence \( |\log x| = \log x \)). Given the limits of integration \( \frac{1}{e} \) to \( e \), we can split the integral at \( x = 1 \): \[ I = \int_{\frac{1}{e}}^{1} \frac{-\log x}{x^2} \, dx + \int_{1}^{e} \frac{\log x}{x^2} \, dx \] ### Step 2: Evaluate the first integral For the first integral, we have: \[ I_1 = \int_{\frac{1}{e}}^{1} \frac{-\log x}{x^2} \, dx \] Substituting \( t = \log x \), we get \( dt = \frac{1}{x} dx \) or \( dx = e^t dt \). The limits change as follows: - When \( x = \frac{1}{e} \), \( t = \log\left(\frac{1}{e}\right) = -1 \). - When \( x = 1 \), \( t = \log(1) = 0 \). Thus, we can rewrite \( I_1 \): \[ I_1 = \int_{-1}^{0} \frac{-t}{e^{2t}} e^t \, dt = \int_{-1}^{0} -t e^{-t} \, dt \] ### Step 3: Evaluate the second integral For the second integral: \[ I_2 = \int_{1}^{e} \frac{\log x}{x^2} \, dx \] Using the same substitution \( t = \log x \), we have: - When \( x = 1 \), \( t = 0 \). - When \( x = e \), \( t = 1 \). Thus, we can rewrite \( I_2 \): \[ I_2 = \int_{0}^{1} t e^{-t} \, dt \] ### Step 4: Combine the integrals Now we have: \[ I = I_1 + I_2 = \int_{-1}^{0} -t e^{-t} \, dt + \int_{0}^{1} t e^{-t} \, dt \] ### Step 5: Evaluate the integrals using integration by parts Using integration by parts for both integrals: 1. For \( I_1 \): Let \( u = -t \) and \( dv = e^{-t} dt \). Then \( du = -dt \) and \( v = -e^{-t} \). Thus, \[ I_1 = \left[-t e^{-t}\right]_{-1}^{0} + \int_{-1}^{0} e^{-t} dt = [0 - (-1)e^{-(-1)}] + [1 - e^{-1}] \] \[ = e^{-1} + 1 - e^{-1} = 1 \] 2. For \( I_2 \): Similarly, \[ I_2 = \left[t e^{-t}\right]_{0}^{1} - \int_{0}^{1} e^{-t} dt = [1 \cdot e^{-1} - 0] - [1 - e^{-1}] = e^{-1} - (1 - e^{-1}) = 2e^{-1} - 1 \] ### Step 6: Combine results Now we can combine: \[ I = 1 + (2e^{-1} - 1) = 2e^{-1} \] ### Final Result Thus, the value of the integral is: \[ I = 2(1 - \frac{1}{e}) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of integral int_(1)^(e) (log x)^(3)dx , is

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

The value of int_(1)^(e^(37))(pi sin(pi log x))/(x)dx is ………….

int_(1)^(e) (e^(x) (1+xlog x))/(x) dx

The value of int_1^e (1+x^2 In x)/(x+x^2 In x) dx is equal (a) In (1+e)e+In(1+e) (b) e-In(1+e)

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

The value of int_(-pi//4)^(pi//4)(e^(x)sec^(2)x)/(e^(2x)-1)dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  2. If int(0)^(pi//2) cos^(n)x sin^(n) x dx=lambda int(0)^(pi//2) sin^(n)x...

    Text Solution

    |

  3. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  4. int(ac)^(bc)f(x)dx, where c ne 0, is also equal to :

    Text Solution

    |

  5. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  6. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  7. The value of int(0)^(2) | cos ""(pi)/( 2) t|dt is equal to

    Text Solution

    |

  8. If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  9. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  10. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  11. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  12. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  13. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  14. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  15. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  16. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  17. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  18. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  19. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  20. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |