Home
Class 12
MATHS
(d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is e...

`(d)/(dx)(int_(f(x))^(g(x)) phi(t)dt)` is equal to

A

`phi(g(x))-phi(f(x))`

B

`(1)/(2)[phi(g(x))]^(2)-(1)/(2)[phi(f(x))]^(2)`

C

`g'(x)phi(g(x))-f'(x)phi(f(x))`

D

`phi(g(x))g'(x)0-phi'(f(x))f'(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(\frac{d}{dx}\left(\int_{f(x)}^{g(x)} \phi(t) \, dt\right)\), we can use the Leibniz rule for differentiating under the integral sign. Here are the steps to arrive at the solution: ### Step-by-Step Solution: 1. **Identify the Integral**: We have the integral \(\int_{f(x)}^{g(x)} \phi(t) \, dt\). 2. **Apply Leibniz Rule**: According to the Leibniz rule, the derivative of an integral with variable limits can be expressed as: \[ \frac{d}{dx}\left(\int_{a(x)}^{b(x)} \phi(t) \, dt\right) = \phi(b(x)) \cdot b'(x) - \phi(a(x)) \cdot a'(x) \] where \(a(x) = f(x)\) and \(b(x) = g(x)\). 3. **Differentiate the Limits**: In our case, we differentiate the upper limit \(g(x)\) and the lower limit \(f(x)\): \[ \frac{d}{dx}\left(\int_{f(x)}^{g(x)} \phi(t) \, dt\right) = \phi(g(x)) \cdot g'(x) - \phi(f(x)) \cdot f'(x) \] 4. **Substitute the Function**: Here, \(\phi(g(x))\) is the value of the integrand at the upper limit and \(\phi(f(x))\) is the value at the lower limit. 5. **Final Expression**: Thus, we can write the final result as: \[ \frac{d}{dx}\left(\int_{f(x)}^{g(x)} \phi(t) \, dt\right) = g'(x) \cdot \phi(g(x)) - f'(x) \cdot \phi(f(x)) \] ### Conclusion: The expression \(\frac{d}{dx}\left(\int_{f(x)}^{g(x)} \phi(t) \, dt\right)\) is equal to: \[ g'(x) \cdot \phi(g(x)) - f'(x) \cdot \phi(f(x)) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(int_(x^(2))^((x^(3)) (1)/(logt)dt) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

Let f(t)="ln"(t) . Then, (d)/(dx)(int_(x^(2))^(x^(3))f(t)" dt")

(d)/(dx)int_(x^(2))^(x)sqrt(cost)dt (at x=0 ) equals to ________.

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

lim_(x->0) 1/x [int_y ^a)e^(sin^2t) dt-int_(x+y) ^a)e^(sin^2t)dt] is equal to (a) e^(sin^(2)y) (b) sin2ye^(sin^(2)y (c) 0 (d) none of these

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

According to Leibritz differentiation under the sign of integration can be performed as as below. (i) (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)} (ii) (d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x)) The points of maximum of the function f(x)=int_(0)^(x^(2))(t^(2)-5t+4)/(2+e^(t))dt

According to Leibritz differentiation under the sign of integration can be performed as as below. (i) (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)} (ii) (d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x)) int_(x^(2))^(x^(3))cost^(2)dt has the derivative

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(1//e )^(e )(|log x|)/(x^(2))dx, is

    Text Solution

    |

  2. int(ac)^(bc)f(x)dx, where c ne 0, is also equal to :

    Text Solution

    |

  3. (d)/(dx)(int(f(x))^(g(x)) phi(t)dt) is equal to

    Text Solution

    |

  4. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  5. The value of int(0)^(2) | cos ""(pi)/( 2) t|dt is equal to

    Text Solution

    |

  6. If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  7. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  8. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  9. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  10. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  11. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  12. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  13. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  14. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  15. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  16. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  17. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  18. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  19. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  20. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |