Home
Class 12
MATHS
If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k in...

If `int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx`, then k=`

A

1

B

2

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I = \int_{0}^{1} \cot^{-1}(1 - x + x^2) \, dx \) and express it in terms of \( \int_{0}^{1} \tan^{-1}(x) \, dx \). ### Step-by-step Solution: 1. **Define the integral:** \[ I = \int_{0}^{1} \cot^{-1}(1 - x + x^2) \, dx \] 2. **Use the identity for cotangent inverse:** Recall that \( \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right) \). Thus, we can rewrite the integral: \[ I = \int_{0}^{1} \tan^{-1}\left(\frac{1}{1 - x + x^2}\right) \, dx \] 3. **Simplify the argument of the tangent inverse:** The expression \( 1 - x + x^2 \) can be rewritten as: \[ 1 - x + x^2 = (x - 1)^2 + 1 \] Therefore, \[ \frac{1}{1 - x + x^2} = \frac{1}{(x - 1)^2 + 1} \] 4. **Apply the tangent inverse identity:** We can use the formula: \[ \tan^{-1}(a - b) = \tan^{-1}(a) - \tan^{-1}(b) \text{ if } ab < 1 \] Here, we can express: \[ I = \int_{0}^{1} \left( \tan^{-1}(x) - \tan^{-1}(1 - x) \right) \, dx \] 5. **Evaluate the second integral:** Let \( I_1 = \int_{0}^{1} \tan^{-1}(1 - x) \, dx \). We can use the property of definite integrals: \[ I_1 = \int_{0}^{1} \tan^{-1}(1 - x) \, dx = \int_{0}^{1} \tan^{-1}(x) \, dx \] This means: \[ I_1 = \int_{0}^{1} \tan^{-1}(x) \, dx \] 6. **Combine the integrals:** Therefore, we have: \[ I = \int_{0}^{1} \tan^{-1}(x) \, dx - \int_{0}^{1} \tan^{-1}(1 - x) \, dx = \int_{0}^{1} \tan^{-1}(x) \, dx - I_1 \] Since \( I_1 = I \), we can write: \[ I = \int_{0}^{1} \tan^{-1}(x) \, dx - I \] This implies: \[ 2I = \int_{0}^{1} \tan^{-1}(x) \, dx \] Hence, \[ I = \frac{1}{2} \int_{0}^{1} \tan^{-1}(x) \, dx \] 7. **Relate it to the original equation:** From the problem statement, we have: \[ I = k \int_{0}^{1} \tan^{-1}(x) \, dx \] Setting the two expressions for \( I \) equal gives: \[ \frac{1}{2} \int_{0}^{1} \tan^{-1}(x) \, dx = k \int_{0}^{1} \tan^{-1}(x) \, dx \] Dividing both sides by \( \int_{0}^{1} \tan^{-1}(x) \, dx \) (which is non-zero) yields: \[ k = \frac{1}{2} \] ### Final Answer: Thus, the value of \( k \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

Let J=int_(0)^(1)cot^(-1)(1-x+x^(2))dx and K= int_(0)^(1)tan^(-1)xdx .If J=lambda K (lambda in N) , then lambda equals

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_0^1cot^(- 1)(1-x+x^2)dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

int_(0)^(1) (1)/(1+x+2x^(2))dx

int_(0)^(1) x dx

int_(0)^(1)x^2dx

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

Solve: int_(-1)^(1)x tan^(-1)x dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If f(x)=ae^(2x)+be^(x)+cx, satisfies the conditions f(0)=-1, f'(log 2)...

    Text Solution

    |

  2. The value of int(0)^(2) | cos ""(pi)/( 2) t|dt is equal to

    Text Solution

    |

  3. If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  4. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  5. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  6. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  7. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  8. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  9. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  10. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  11. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  12. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  13. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  14. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  15. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  16. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  17. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  18. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  19. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  20. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |