Home
Class 12
MATHS
The value of int(0)^(pi//2) (x+sin x)/(1...

The value of `int_(0)^(pi//2) (x+sin x)/(1+cos x)dx`, is

A

`pi`

B

`2pi`

C

`pi//2`

D

`3pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} \frac{x + \sin x}{1 + \cos x} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We can express the integral as: \[ I = \int_0^{\frac{\pi}{2}} \frac{x + \sin x}{1 + \cos x} \, dx \] We can rewrite \( \sin x \) and \( 1 + \cos x \) in terms of half-angle identities: \[ \sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}, \quad 1 + \cos x = 2 \cos^2 \frac{x}{2} \] Thus, we can rewrite our integral: \[ I = \int_0^{\frac{\pi}{2}} \frac{x + 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos^2 \frac{x}{2}} \, dx \] This simplifies to: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{2}} \left( \frac{x}{\cos^2 \frac{x}{2}} + 2 \tan \frac{x}{2} \right) dx \] ### Step 2: Split the Integral Now, we can split the integral into two parts: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{x}{\cos^2 \frac{x}{2}} \, dx + \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx \] ### Step 3: Integrate the First Part using Integration by Parts Let: \[ u = x, \quad dv = \sec^2 \frac{x}{2} \, dx \] Then: \[ du = dx, \quad v = 2 \tan \frac{x}{2} \] Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int_0^{\frac{\pi}{2}} x \sec^2 \frac{x}{2} \, dx = \left[ 2x \tan \frac{x}{2} \right]_0^{\frac{\pi}{2}} - 2 \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx \] ### Step 4: Evaluate the Limits Evaluating \( \left[ 2x \tan \frac{x}{2} \right]_0^{\frac{\pi}{2}} \): - At \( x = \frac{\pi}{2} \): \[ 2 \cdot \frac{\pi}{2} \cdot \tan \frac{\pi}{4} = \pi \cdot 1 = \pi \] - At \( x = 0 \): \[ 2 \cdot 0 \cdot \tan 0 = 0 \] Thus, the evaluation gives: \[ \pi - 2 \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx \] ### Step 5: Combine the Results Now we have: \[ I = \frac{1}{2} \left( \pi - 2 \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx \right) + \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx \] This simplifies to: \[ I = \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx + \int_0^{\frac{\pi}{2}} \tan \frac{x}{2} \, dx = \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x cos x dx

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

The value of int_(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx , is

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

(sin 2 kx)/(sin x)=2[cos x + cos 3 x + …+cos (2k -1)x] , then value of I=int_(0)^(pi//2)(sin 2 k x)/(sin x)cos x dx is :

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

Evaluate : int_0^(pi/2)(sin^2x)/(sin x+cos x)dx

The value of int_(0)^(2pi) |cos x -sin x|dx is

int_(0)^(pi) x sin x cos^(2)x\ dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If int(0)^(1) cot^(-1)(1-x+x^(2))dx=k int(0)^(1) tan^(-1)x dx, then k=

    Text Solution

    |

  2. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  3. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  4. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  5. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  6. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  7. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  8. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  9. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  10. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  11. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  12. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  13. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  14. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  15. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  16. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  17. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  18. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  19. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  20. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |