Home
Class 12
MATHS
If a is a fixed real number such that f(...

If a is a fixed real number such that f(a-x)+f(a+x)=0, then `int_(0)^(2a) f(x)` dx=

A

`(a)/(2)`

B

0

C

`-(a)/(2)`

D

2a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{0}^{2a} f(x) \, dx \) given the condition \( f(a - x) + f(a + x) = 0 \). ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We start with the condition: \[ f(a - x) + f(a + x) = 0 \] This implies that: \[ f(a - x) = -f(a + x) \] 2. **Substituting \( x \) with \( a - x \)**: Let's replace \( x \) with \( a - x \) in the original equation: \[ f(a - (a - x)) + f(a + (a - x)) = 0 \] Simplifying this gives: \[ f(x) + f(2a - x) = 0 \] Thus, we can conclude: \[ f(2a - x) = -f(x) \] 3. **Setting Up the Integral**: Now we can evaluate the integral: \[ \int_{0}^{2a} f(x) \, dx \] We can split this integral into two parts: \[ \int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{a}^{2a} f(x) \, dx \] 4. **Changing the Variable in the Second Integral**: In the second integral, we will use the substitution \( x = 2a - u \), where \( dx = -du \). When \( x = a \), \( u = a \) and when \( x = 2a \), \( u = 0 \). Thus: \[ \int_{a}^{2a} f(x) \, dx = \int_{a}^{0} f(2a - u) (-du) = \int_{0}^{a} f(2a - u) \, du \] Using our earlier result \( f(2a - u) = -f(u) \), we get: \[ \int_{a}^{2a} f(x) \, dx = \int_{0}^{a} -f(u) \, du = -\int_{0}^{a} f(x) \, dx \] 5. **Combining the Results**: Now substituting back into our integral: \[ \int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + (-\int_{0}^{a} f(x) \, dx) = 0 \] ### Final Result: Thus, we conclude: \[ \int_{0}^{2a} f(x) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

int_(m)^(0)f(x)dx is

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

If f(a+b+1-x)=f(x) , for all x where a and b are fixed positive real numbers, the (1)/(a+b) int_(a)^(b) x(f(x)+f(x+1) dx is equal to :

Let f(x) be a continuous function in R such that f(x)+f(y)=f(x+y) , then int_-2^2 f(x)dx= (A) 2int_0^2 f(x)dx (B) 0 (C) 2f(2) (D) none of these

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Prove that: int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If 0 lt a lt 1, then int(-1)^(1) (1)/(sqrt(1-2ax+a^(2)))dx is equal to

    Text Solution

    |

  2. The value of int(0)^(pi//2) (x+sin x)/(1+cos x)dx, is

    Text Solution

    |

  3. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  4. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  5. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  6. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  7. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  8. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  9. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  10. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  11. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  12. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  13. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  14. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  15. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  16. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  17. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  18. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  19. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  20. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |