Home
Class 12
MATHS
The value of int(0)^(1) tan^(-1)((2x-1)/...

The value of `int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx` is

A

1

B

0

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \tan^{-1}\left(\frac{2x-1}{1+x-x^2}\right)dx \), we can use the properties of definite integrals and the symmetry of the function involved. ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int_0^1 \tan^{-1}\left(\frac{2x-1}{1+x-x^2}\right)dx \] ### Step 2: Use the Substitution \( x = 1 - t \) Let’s perform the substitution \( x = 1 - t \). Then, when \( x = 0 \), \( t = 1 \) and when \( x = 1 \), \( t = 0 \). The differential \( dx \) becomes \( -dt \). Thus, we can rewrite the integral as: \[ I = \int_1^0 \tan^{-1}\left(\frac{2(1-t)-1}{1+(1-t)-(1-t)^2}\right)(-dt) \] This simplifies to: \[ I = \int_0^1 \tan^{-1}\left(\frac{2 - 2t - 1}{1 + 1 - t - (1 - 2t + t^2)}\right)dt \] ### Step 3: Simplify the Argument of \( \tan^{-1} \) Now, simplify the argument: \[ \frac{1 - 2t}{1 + 1 - t - (1 - 2t + t^2)} = \frac{1 - 2t}{1 + 1 - t - 1 + 2t - t^2} = \frac{1 - 2t}{1 + t - t^2} \] Thus, we have: \[ I = \int_0^1 \tan^{-1}\left(\frac{1 - 2t}{1 + t - t^2}\right)dt \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_0^1 \tan^{-1}\left(\frac{2x-1}{1+x-x^2}\right)dx \) 2. \( I = \int_0^1 \tan^{-1}\left(\frac{1 - 2x}{1 + x - x^2}\right)dx \) Adding these two integrals: \[ 2I = \int_0^1 \left( \tan^{-1}\left(\frac{2x-1}{1+x-x^2}\right) + \tan^{-1}\left(\frac{1 - 2x}{1 + x - x^2}\right) \right) dx \] ### Step 5: Use the Identity for \( \tan^{-1} \) Using the identity \( \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \): Let \( a = \frac{2x-1}{1+x-x^2} \) and \( b = \frac{1-2x}{1+x-x^2} \): \[ a + b = \frac{(2x-1) + (1-2x)}{1+x-x^2} = \frac{0}{1+x-x^2} = 0 \] Thus, \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}(0) = 0 \] Therefore, \[ 2I = \int_0^1 0 \, dx = 0 \] This implies that: \[ I = 0 \] ### Final Answer The value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is a. 1 b. -1 c. 0 d. pi//4

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

STATEMENT 1 : The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2)) dx=0 STATEMENT 2 : int_a^bf(x)dx=int_0^bf(a+b-x)dx then Which of the following statement is correct ?

The value of int_(0)^(1) (1)/(2x-3)dx is

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If a is a fixed real number such that f(a-x)+f(a+x)=0, then int(0)^(2a...

    Text Solution

    |

  2. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  3. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  4. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  5. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  6. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  7. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  8. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  9. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  10. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  11. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  12. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  13. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  14. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  15. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  16. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  17. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  18. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  19. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  20. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |