Home
Class 12
MATHS
The value of int(0)^(2pi) |cos x -sin x|...

The value of `int_(0)^(2pi) |cos x -sin x|dx`is

A

`(4)/(sqrt(2))`

B

`2sqrt(2)`

C

`(2)/(sqrt(2))`

D

`4sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} |\cos x - \sin x| \, dx \), we will follow these steps: ### Step 1: Identify the intervals where \( \cos x - \sin x \) changes sign To determine where \( |\cos x - \sin x| \) changes, we need to find the points where \( \cos x - \sin x = 0 \). \[ \cos x = \sin x \] This occurs when: \[ \tan x = 1 \implies x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] Within the interval \( [0, 2\pi] \), the relevant points are: \[ x = \frac{\pi}{4}, \quad x = \frac{5\pi}{4} \] ### Step 2: Determine the sign of \( \cos x - \sin x \) in each interval Now we evaluate the sign of \( \cos x - \sin x \) in the intervals: 1. **Interval \( [0, \frac{\pi}{4}] \)**: - Choose \( x = 0 \): \[ \cos(0) - \sin(0) = 1 - 0 = 1 \quad (\text{positive}) \] 2. **Interval \( [\frac{\pi}{4}, \frac{5\pi}{4}] \)**: - Choose \( x = \pi \): \[ \cos(\pi) - \sin(\pi) = -1 - 0 = -1 \quad (\text{negative}) \] 3. **Interval \( [\frac{5\pi}{4}, 2\pi] \)**: - Choose \( x = \frac{3\pi}{2} \): \[ \cos\left(\frac{3\pi}{2}\right) - \sin\left(\frac{3\pi}{2}\right) = 0 - (-1) = 1 \quad (\text{positive}) \] ### Step 3: Rewrite the integral based on the sign Now we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx - \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\cos x - \sin x) \, dx + \int_{\frac{5\pi}{4}}^{2\pi} (\cos x - \sin x) \, dx \] ### Step 4: Calculate each integral 1. **Integral from \( 0 \) to \( \frac{\pi}{4} \)**: \[ \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) \, dx = \left[ \sin x + \cos x \right]_{0}^{\frac{\pi}{4}} = \left( \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) \right) - (0 + 1) = \sqrt{2} - 1 \] 2. **Integral from \( \frac{\pi}{4} \) to \( \frac{5\pi}{4} \)**: \[ \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} (\cos x - \sin x) \, dx = \left[ \sin x + \cos x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} = \left( \sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right) \right) - \left( \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) \right) \] \[ = \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right) = -\sqrt{2} - \sqrt{2} = -2\sqrt{2} \] 3. **Integral from \( \frac{5\pi}{4} \) to \( 2\pi \)**: \[ \int_{\frac{5\pi}{4}}^{2\pi} (\cos x - \sin x) \, dx = \left[ \sin x + \cos x \right]_{\frac{5\pi}{4}}^{2\pi} = \left( \sin(2\pi) + \cos(2\pi) \right) - \left( \sin\left(\frac{5\pi}{4}\right) + \cos\left(\frac{5\pi}{4}\right) \right) \] \[ = (0 + 1) - \left(-\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) = 1 + \sqrt{2} \] ### Step 5: Combine the results Now we combine all the results: \[ I = \left( \sqrt{2} - 1 \right) - (-2\sqrt{2}) + (1 + \sqrt{2}) = \sqrt{2} - 1 + 2\sqrt{2} + 1 + \sqrt{2} = 4\sqrt{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{4\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)cos^(5)x dx , is

The value of int_(0)^(pi)|cos x|^(3)dx is :

The value of int_(0)^(2pi) cos^(99)x dx , is

The value of int_(0)^(2pi)[|sin x |+|cos x |] d x is equal to

Evaluate : int_(0)^(pi)(|cos x| + |sin x|)dx .

The value of int_(0)^(pi//2) x^(10) sin x" dx" , is then the value of mu_(10)+90mu_(8) , is

int_(0)^(pi) x sin^(2) x dx

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx, is

    Text Solution

    |

  2. The value of int(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

    Text Solution

    |

  3. The value of int(0)^(2pi) |cos x -sin x|dxis

    Text Solution

    |

  4. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  5. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  6. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  7. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  8. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  9. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  10. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  11. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  12. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  13. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  14. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  15. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  16. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  17. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  18. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  19. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  20. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |