Home
Class 12
MATHS
If f(x)=f(a+b-x) for all x in[a,b] and i...

If f(x)=f(a+b-x) for all `x in[a,b]` and `int_(a)^(b) xf(x) dx=k int_(a)^(b) f(x) dx`, then the value of k, is

A

`(a+b)/(2)`

B

`(a-b)/(2)`

C

`(a^(2)+b^(2))/(2)`

D

`(a^(2)-b^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given function and the integral equation. ### Step 1: Understand the given condition We have the function \( f(x) = f(a + b - x) \) for all \( x \) in the interval \([a, b]\). This property indicates that the function is symmetric about the midpoint \( \frac{a + b}{2} \). **Hint:** Recognize that this symmetry can be leveraged to transform the integral. ### Step 2: Set up the integral Let \( I = \int_a^b x f(x) \, dx \). We will apply the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] to our integral. **Hint:** Identify how to express \( I \) using the symmetry property of \( f(x) \). ### Step 3: Apply the symmetry property Using the property, we can rewrite the integral: \[ I = \int_a^b x f(x) \, dx = \int_a^b (a + b - x) f(a + b - x) \, dx \] By substituting \( u = a + b - x \), we find that \( du = -dx \), which changes the limits of integration accordingly. **Hint:** Remember to change the limits of integration when substituting variables. ### Step 4: Change the variable in the integral When we change the variable, we have: \[ I = \int_b^a (a + b - u) f(u) (-du) = \int_a^b (a + b - u) f(u) \, du \] This can be rewritten as: \[ I = \int_a^b (a + b) f(u) \, du - \int_a^b u f(u) \, du \] This simplifies to: \[ I = (a + b) \int_a^b f(x) \, dx - I \] **Hint:** Notice how \( I \) appears on both sides of the equation. ### Step 5: Solve for \( I \) Now, we can combine the terms: \[ 2I = (a + b) \int_a^b f(x) \, dx \] Thus, we have: \[ I = \frac{(a + b)}{2} \int_a^b f(x) \, dx \] **Hint:** This expression matches the form given in the problem statement. ### Step 6: Relate to the given equation From the problem, we know: \[ I = k \int_a^b f(x) \, dx \] By comparing both expressions for \( I \), we find: \[ k = \frac{(a + b)}{2} \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{\frac{a + b}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

If int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2) then :

int_(a+c)^(b+c) f(x) dx is equal to

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

If int_a^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is ___

If int_a^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is ___

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If I(1)=int(0)^(1) 2^(x^(2)) dx, I(2)=int(0)^(1) 2^(x^(3)) dx, I(3)=in...

    Text Solution

    |

  2. Consider the integrals I(1)=int(0)^(1)e^(-x)cos^(2)xdx,I(2)=int(0)^(...

    Text Solution

    |

  3. If f(x)=f(a+b-x) for all x in[a,b] and int(a)^(b) xf(x) dx=k int(a)^(b...

    Text Solution

    |

  4. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  5. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  6. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  7. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  8. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  9. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  10. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  11. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  12. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  13. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  14. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  15. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  16. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  17. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  18. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  19. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  20. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |