Home
Class 12
MATHS
The value of int(-1//2)^(1//2) |xcos((pi...

The value of `int_(-1//2)^(1//2) |xcos((pix)/(2))|dx` is

A

`(pisqrt(2)+4sqrt(2)-8)/(pi^(2))`

B

`(sqrt(2)+4pisqrt(2)-8)/(pi^(2))`

C

`(pisqrt(2)+4sqrt(2)+8)/(pi^(2))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{1}{2}}^{\frac{1}{2}} |x \cos\left(\frac{\pi x}{2}\right)| \, dx \), we will follow these steps: ### Step 1: Analyze the function The function \( f(x) = |x \cos\left(\frac{\pi x}{2}\right)| \) is defined over the interval \([-1/2, 1/2]\). We need to check if this function is even or odd. ### Step 2: Check if the function is even We find \( f(-x) \): \[ f(-x) = |-x \cos\left(\frac{\pi (-x)}{2}\right)| = |x \cos\left(\frac{\pi x}{2}\right)| = f(x) \] Since \( f(-x) = f(x) \), the function is even. ### Step 3: Use the property of definite integrals Since \( f(x) \) is even, we can use the property of definite integrals: \[ \int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \] Thus, we have: \[ I = 2 \int_{0}^{\frac{1}{2}} x \cos\left(\frac{\pi x}{2}\right) \, dx \] ### Step 4: Set up for integration by parts Let: - \( u = x \) (then \( du = dx \)) - \( dv = \cos\left(\frac{\pi x}{2}\right) dx \) (then \( v = \frac{2}{\pi} \sin\left(\frac{\pi x}{2}\right) \)) ### Step 5: Apply integration by parts Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We have: \[ \int x \cos\left(\frac{\pi x}{2}\right) \, dx = x \cdot \frac{2}{\pi} \sin\left(\frac{\pi x}{2}\right) - \int \frac{2}{\pi} \sin\left(\frac{\pi x}{2}\right) \, dx \] ### Step 6: Calculate the integral of \( \sin\left(\frac{\pi x}{2}\right) \) The integral of \( \sin\left(\frac{\pi x}{2}\right) \) is: \[ \int \sin\left(\frac{\pi x}{2}\right) \, dx = -\frac{2}{\pi} \cos\left(\frac{\pi x}{2}\right) \] ### Step 7: Substitute back into the integration by parts formula Now substituting back: \[ \int x \cos\left(\frac{\pi x}{2}\right) \, dx = x \cdot \frac{2}{\pi} \sin\left(\frac{\pi x}{2}\right) + \frac{2}{\pi} \cdot \frac{2}{\pi} \cos\left(\frac{\pi x}{2}\right) \] Thus: \[ \int x \cos\left(\frac{\pi x}{2}\right) \, dx = \frac{2}{\pi} x \sin\left(\frac{\pi x}{2}\right) + \frac{4}{\pi^2} \cos\left(\frac{\pi x}{2}\right) \] ### Step 8: Evaluate from 0 to \( \frac{1}{2} \) Now we evaluate: \[ \int_{0}^{\frac{1}{2}} x \cos\left(\frac{\pi x}{2}\right) \, dx = \left[ \frac{2}{\pi} x \sin\left(\frac{\pi x}{2}\right) + \frac{4}{\pi^2} \cos\left(\frac{\pi x}{2}\right) \right]_{0}^{\frac{1}{2}} \] Calculating at the upper limit \( x = \frac{1}{2} \): \[ = \frac{2}{\pi} \cdot \frac{1}{2} \cdot \sin\left(\frac{\pi}{4}\right) + \frac{4}{\pi^2} \cos\left(\frac{\pi}{4}\right) \] \[ = \frac{1}{\pi} \cdot \frac{1}{\sqrt{2}} + \frac{4}{\pi^2} \cdot \frac{1}{\sqrt{2}} = \frac{1 + \frac{4}{\pi}}{\pi \sqrt{2}} \] At the lower limit \( x = 0 \): \[ = 0 + \frac{4}{\pi^2} \cdot 1 = \frac{4}{\pi^2} \] ### Step 9: Combine results Thus: \[ \int_{0}^{\frac{1}{2}} x \cos\left(\frac{\pi x}{2}\right) \, dx = \frac{1}{\pi \sqrt{2}} + \frac{4}{\pi^2} - 0 \] ### Step 10: Final result Now, substituting back into the equation for \( I \): \[ I = 2 \left( \frac{1}{\pi \sqrt{2}} + \frac{4}{\pi^2} \right) = \frac{2}{\pi \sqrt{2}} + \frac{8}{\pi^2} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{2}{\pi \sqrt{2}} + \frac{8}{\pi^2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of ({int_(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int_(0)^(1//2)cos2x.log((1+x)/(1-x))dx}) is

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

Find the value of int_(-1)^(3/2)|xsinpix|dx

The value of int_(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes greatest integer function is

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

The value of int_(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the greatest integer function, is (a)1 (b) 1//2 (c) 2 (d) none of these

The value of I=int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx is

The value of the integral int_(-1//2)^(1//2) cos x log((1+x)/(1-x))dx , is

The value of int_(0)^(1) (1)/(2x-3)dx is

The value of int_(1)^(2) (dx)/(x(1+x^(4)) is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. To find the numberical value of int(-2)^(2) (px^(3)+qx+s)dx it is nece...

    Text Solution

    |

  2. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  3. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  4. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  5. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  6. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  7. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  8. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  9. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  10. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  13. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  14. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  15. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  16. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  17. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  18. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  19. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  20. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |