Home
Class 12
MATHS
The value of the integral int(0)^(pi//2)...

The value of the integral `int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx` is

A

`pi//4`

B

`pi//2`

C

`pi`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{f(x) + f\left(\frac{\pi}{2} - x\right)} \, dx, \] we will use a property of definite integrals. ### Step 1: Define the Integral Let \[ I = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{f(x) + f\left(\frac{\pi}{2} - x\right)} \, dx. \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals which states that \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, we set \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{f\left(\frac{\pi}{2} - x\right)}{f\left(\frac{\pi}{2} - x\right) + f(x)} \, dx. \] ### Step 3: Change of Variable Now, we can change the variable in the integral. Let \( u = \frac{\pi}{2} - x \). Then \( du = -dx \), and the limits change as follows: - When \( x = 0 \), \( u = \frac{\pi}{2} \). - When \( x = \frac{\pi}{2} \), \( u = 0 \). Thus, we rewrite the integral: \[ I = \int_{\frac{\pi}{2}}^{0} \frac{f(u)}{f(u) + f\left(\frac{\pi}{2} - u\right)} (-du) = \int_{0}^{\frac{\pi}{2}} \frac{f(u)}{f(u) + f\left(\frac{\pi}{2} - u\right)} \, du. \] ### Step 4: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{f(x) + f\left(\frac{\pi}{2} - x\right)} \, dx \) (Equation 1) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{f\left(\frac{\pi}{2} - x\right)}{f\left(\frac{\pi}{2} - x\right) + f(x)} \, dx \) (Equation 2) ### Step 5: Add the Two Equations Now, we add Equation 1 and Equation 2: \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{f(x)}{f(x) + f\left(\frac{\pi}{2} - x\right)} + \frac{f\left(\frac{\pi}{2} - x\right)}{f\left(\frac{\pi}{2} - x\right) + f(x)} \right) dx. \] ### Step 6: Simplify the Expression The sum inside the integral simplifies to: \[ \frac{f(x) + f\left(\frac{\pi}{2} - x\right)}{f(x) + f\left(\frac{\pi}{2} - x\right)} = 1. \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}. \] ### Step 7: Solve for \( I \) Now, dividing both sides by 2 gives: \[ I = \frac{\pi}{4}. \] ### Final Answer Thus, the value of the integral is \[ \boxed{\frac{\pi}{4}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If f(1 + x) = f(1 - x) (AA x in R) , then the value of the integral I = int_(-7)^(9)(f(x))/(f(x)+f(2-x))dx is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

Let f: Rveca n dg: RvecR be continuous function. Then the value of the integral int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s (a) pi (b) 1 (c) -1 (d) 0

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Let f: Rveca n dg: RvecR be continuous function. Then the value of the...

    Text Solution

    |

  2. The value of int(-1//2)^(1//2) |xcos((pix)/(2))|dx is

    Text Solution

    |

  3. The value of the integral int(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

    Text Solution

    |

  4. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  5. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  6. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  7. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  8. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  9. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  10. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  11. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  12. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  13. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  14. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  15. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  16. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  17. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  18. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  19. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |

  20. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |