Home
Class 12
MATHS
If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))...

If `I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx`then which one of the following is not true ?

A

`I lt (pi)/(6)`

B

`I ge (1)/(2)`

C

`I gt 0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the integral \( I = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^{2n}}} \, dx \) and determine which of the given statements about \( I \) is not true. ### Step 1: Set up the integral We have: \[ I = \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^{2n}}} \, dx \] ### Step 2: Analyze the function under the integral For \( x \) in the interval \( [0, \frac{1}{2}] \) and \( n > 1 \), we can observe that \( x^{2n} < x^2 \). Thus, we can state: \[ 1 - x^{2n} > 1 - x^2 \] Taking the square root: \[ \sqrt{1 - x^{2n}} > \sqrt{1 - x^2} \] ### Step 3: Invert the inequality This implies: \[ \frac{1}{\sqrt{1 - x^{2n}}} < \frac{1}{\sqrt{1 - x^2}} \] ### Step 4: Integrate both sides Now we can integrate both sides from \( 0 \) to \( \frac{1}{2} \): \[ \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^{2n}}} \, dx < \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} \, dx \] Thus: \[ I < \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} \, dx \] ### Step 5: Evaluate the right-hand side integral The integral \( \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} \, dx \) can be evaluated as: \[ \int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1}(x) + C \] Evaluating from \( 0 \) to \( \frac{1}{2} \): \[ \sin^{-1}\left(\frac{1}{2}\right) - \sin^{-1}(0) = \frac{\pi}{6} - 0 = \frac{\pi}{6} \] ### Step 6: Conclude the comparison Thus, we have: \[ I < \frac{\pi}{6} \] Now, since \( \frac{\pi}{6} \approx 0.523 \), we can conclude: \[ I < \frac{5}{6} \quad \text{(since } \frac{5}{6} \approx 0.833 \text{)} \] ### Step 7: Check the other inequalities We also know: 1. \( I > 0 \) (since the integrand is positive). 2. We need to check if \( I \geq \frac{1}{2} \). Given that \( I \) is less than \( \frac{5}{6} \) but greater than \( 0 \), we can conclude that \( I \) could be less than \( \frac{1}{2} \) depending on the value of \( n \). ### Conclusion Thus, we can summarize: - \( I < \frac{5}{6} \) is true. - \( I > 0 \) is true. - \( I \geq \frac{1}{2} \) may not be true for all \( n > 1 \). Therefore, the statement that is **not true** is: - \( I \geq \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int_(0)^(1)(x sin^(-1)x)/(sqrt(1-x^(2)))dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

int_(0)^(1//2) (x sin^(-1)x)/(sqrt(1-x^(2)))dx=?

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

Let I=int_(0)^(1)(sinx)/(sqrtx) dx and f= int_(0)^(1)( cos x)/(sqrtx) dx Then , which one of the following is true ?

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(pi//2)^0 (1)/(9 cosx+12 sinx)dx is

    Text Solution

    |

  2. If I=int(3)^(4) (1)/(3sqrt(logx))dxthen

    Text Solution

    |

  3. If I=int(0)^(1//2) (1)/(sqrt(1-x^(2n)))dxthen which one of the follow...

    Text Solution

    |

  4. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  5. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  6. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  7. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  8. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  9. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  10. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  11. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  12. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  13. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  14. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  15. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  16. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |

  17. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  18. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  19. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  20. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |