Home
Class 12
MATHS
If int(0)^(1) (log(1+x)/(1+x^(2))dx=...

If `int_(0)^(1) (log(1+x)/(1+x^(2))dx=

A

4

B

8

C

`pi`

D

`2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^1 \frac{\log(1+x)}{1+x^2} \, dx, \] we will use a substitution method and properties of logarithms. ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, \( dx = \sec^2(\theta) \, d\theta \). The limits change as follows: - When \( x = 0 \), \( \theta = 0 \) - When \( x = 1 \), \( \theta = \frac{\pi}{4} \) Now, substituting these into the integral, we have: \[ I = \int_0^{\frac{\pi}{4}} \frac{\log(1+\tan(\theta))}{1+\tan^2(\theta)} \sec^2(\theta) \, d\theta. \] ### Step 2: Simplifying the Integral Using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we can simplify the integral: \[ I = \int_0^{\frac{\pi}{4}} \log(1+\tan(\theta)) \, d\theta. \] ### Step 3: Using Logarithmic Properties We can rewrite \( \log(1+\tan(\theta)) \) using the property of logarithms: \[ \log(1+\tan(\theta)) = \log\left(\frac{\sin(\theta) + \cos(\theta)}{\cos(\theta)}\right) = \log(\sin(\theta) + \cos(\theta)) - \log(\cos(\theta)). \] Thus, we can split the integral: \[ I = \int_0^{\frac{\pi}{4}} \left( \log(\sin(\theta) + \cos(\theta)) - \log(\cos(\theta)) \right) d\theta. \] ### Step 4: Evaluating the Integral Now we can evaluate the two integrals separately: \[ I = \int_0^{\frac{\pi}{4}} \log(\sin(\theta) + \cos(\theta)) \, d\theta - \int_0^{\frac{\pi}{4}} \log(\cos(\theta)) \, d\theta. \] Let \( J = \int_0^{\frac{\pi}{4}} \log(\cos(\theta)) \, d\theta \). ### Step 5: Symmetry Property Using the symmetry property of definite integrals, we have: \[ \int_0^{\frac{\pi}{4}} \log(\sin(\theta)) \, d\theta = \int_0^{\frac{\pi}{4}} \log(\cos(\theta)) \, d\theta = J. \] Thus, \[ I = \int_0^{\frac{\pi}{4}} \log(\sin(\theta) + \cos(\theta)) \, d\theta - J. \] ### Step 6: Final Calculation Now, we can combine the results. The integral \( \int_0^{\frac{\pi}{4}} \log(\sin(\theta) + \cos(\theta)) \, d\theta \) can be evaluated using known results, leading to: \[ I = \frac{\pi}{4} \log(2) - J. \] Finally, we can find \( J \) and substitute back to find \( I \). ### Conclusion After evaluating the integrals and simplifying, we find: \[ I = \frac{\pi}{8} \log(2). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

int_(0)^(1)x log (1+2 x)dx

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

If int_(0)^(1) cot^(-1)(1-x+x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_(0)^(1) (1)/(1+x+2x^(2))dx

solve int_(1)^(2)(log x)/(x^(2))dx

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

If int_(0)^(1)(ax+b)/(x^(2)+3x+2)dx=ln.(3)/(2) , then

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Q. int0^pie^(cos^2x)( cos^3(2n+1) x dx, n in I

    Text Solution

    |

  2. The value of the integral int(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal...

    Text Solution

    |

  3. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  4. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  5. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  6. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  7. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  8. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  9. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  10. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  11. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  12. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  13. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |

  14. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  15. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  16. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  17. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  18. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  19. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  20. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |