Home
Class 12
MATHS
The value of the integral overset(pi)und...

The value of the integral `overset(pi)underset(0)int log(1+cos x)dx` is

A

`(pi)/(2)log2`

B

`-pi log2`

C

`pi log2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} \log(1 + \cos x) \, dx \), we can use properties of definite integrals and logarithmic identities. Here’s a step-by-step solution: ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^{\pi} \log(1 + \cos x) \, dx \] ### Step 2: Use the property of definite integrals We can use the property that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, let \( a = \pi \): \[ I = \int_0^{\pi} \log(1 + \cos(\pi - x)) \, dx \] Since \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_0^{\pi} \log(1 - \cos x) \, dx \] ### Step 3: Combine the two integrals Now we have two expressions for \( I \): \[ I = \int_0^{\pi} \log(1 + \cos x) \, dx \quad \text{(1)} \] \[ I = \int_0^{\pi} \log(1 - \cos x) \, dx \quad \text{(2)} \] Adding these two equations gives: \[ 2I = \int_0^{\pi} \left( \log(1 + \cos x) + \log(1 - \cos x) \right) \, dx \] Using the property of logarithms, we can combine the logs: \[ 2I = \int_0^{\pi} \log((1 + \cos x)(1 - \cos x)) \, dx \] This simplifies to: \[ 2I = \int_0^{\pi} \log(1 - \cos^2 x) \, dx \] ### Step 4: Simplify the expression Using the identity \( 1 - \cos^2 x = \sin^2 x \), we have: \[ 2I = \int_0^{\pi} \log(\sin^2 x) \, dx \] This can be further simplified: \[ 2I = 2 \int_0^{\pi} \log(\sin x) \, dx \] Thus, \[ I = \int_0^{\pi} \log(\sin x) \, dx \] ### Step 5: Evaluate the integral The integral \( \int_0^{\pi} \log(\sin x) \, dx \) is a known result and evaluates to: \[ \int_0^{\pi} \log(\sin x) \, dx = -\pi \log(2) \] Therefore, we have: \[ I = -\pi \log(2) \] ### Final Result Thus, the value of the integral \( \int_0^{\pi} \log(1 + \cos x) \, dx \) is: \[ \boxed{-\pi \log(2)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral overset(pi)underset(0)int (sin k x)/(sin x)dx (k is an even integer) is equal to

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral overset(a)underset(0)int (1)/(1+e^(f(x)))dx is equal to

The value of the integral overset(e )underset(1//e)int |logx|dx , is

The value of the integral overset(2)underset(0)int (log(x^(2)+2))/((x+2)^(2)) , dx is

The value of the definite integral overset(3pi//4)underset(0)int(1+x)sin x+(1-x) cos x)dx is

overset(pi)underset(0)int (1)/(1+3^(cosx)) dx is equal to

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

If overset(1)underset(0)int(sint)/(1+t)dt=alpha , then the value of the integral overset(4pi)underset(4pi-2)int("sin"(t)/(2))/(4pi+2-t)dt in terms of alpha is given by

The value of the integral underset(0)overset(1)int cot^(-1) (1-x+x^(2))dx , is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If int(0)^(1) (log(1+x)/(1+x^(2))dx=

    Text Solution

    |

  2. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  3. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  4. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  5. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  6. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  7. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  8. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  9. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  10. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  11. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |

  12. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  13. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  14. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  15. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  16. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  17. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  18. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  19. If (d(f(x)))/(dx) = g(x) AA x in [a, b] then int(a)^(b)f(x).g(x)dx is ...

    Text Solution

    |

  20. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |