Home
Class 12
MATHS
The integral int(0)^(pi//2) f(sin 2 x)si...

The integral `int_(0)^(pi//2) f(sin 2 x)sin x dx` is equal to

A

`overset(pi//2)underset(0)int f(cos 2 x)sin x dx =sqrt(2)overset(pi//2)underset(0)int f(cos 2x)sin x dx`

B

`overset(pi//2)underset(0)int f(sin 2 x)cos x dx =sqrt(2)overset(pi//4)underset(0)int f(cos 2x)cos x dx`

C

`overset(pi//2)underset(0)int f(cos 2 x)cos x dx =sqrt(2)overset(pi//2)underset(0)int f(cos 2x)cos x dx`

D

`overset(pi//2)underset(0)int f(sin 2 x)cos x dx =sqrt(2)overset(pi//2)underset(0)int f(cos 2x)cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx, \] we can use a property of definite integrals. This property states that if we have an integral of the form \[ \int_{0}^{a} f(\theta) \, d\theta, \] we can also express it as \[ \int_{0}^{a} f(a - \theta) \, d\theta. \] ### Step 1: Apply the property to our integral Let’s apply this property to our integral. Here, \( a = \frac{\pi}{2} \): \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx = \int_{0}^{\frac{\pi}{2}} f\left(\sin\left(\pi - 2x\right)\right) \sin\left(\frac{\pi}{2} - x\right) \, dx. \] ### Step 2: Simplify the expression Now, we simplify the terms: 1. \(\sin\left(\pi - 2x\right) = \sin(2x)\) 2. \(\sin\left(\frac{\pi}{2} - x\right) = \cos x\) Thus, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx. \] ### Step 3: Add the two expressions for \(I\) Now we have two expressions for \(I\): 1. \(I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx\) 2. \(I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \cos x \, dx\) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} f(\sin 2x) (\sin x + \cos x) \, dx. \] ### Step 4: Factor out the common terms Now, we can factor out the common terms: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} f(\sin 2x) (\sin x + \cos x) \, dx. \] ### Step 5: Use the identity for \(\sin x + \cos x\) Notice that \(\sin x + \cos x\) can be rewritten using the identity: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right). \] Thus, we can express our integral as: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \, dx. \] ### Step 6: Final expression for \(I\) This leads us to the final expression for \(I\): \[ I = \frac{\sqrt{2}}{2} \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin\left(x + \frac{\pi}{4}\right) \, dx. \] ### Conclusion Thus, the integral \[ \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin x \, dx \] is equal to \[ \frac{\sqrt{2}}{2} \int_{0}^{\frac{\pi}{2}} f(\sin 2x) \sin\left(x + \frac{\pi}{4}\right) \, dx. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int_(0)^(pi//2) sin 2x log cot x dx is equal to

Let m be any integer. Then, the integral int_(0)^(pi) (sin 2m x)/(sin x)dx equals

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi//2) x sin x cos x dx

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(-3pi)^(3pi)|sin^(3)x|dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

    Text Solution

    |

  2. The value of the integral overset(pi)underset(0)int(1)/(a^(2)-2a cos x...

    Text Solution

    |

  3. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  4. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  5. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  6. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  7. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  8. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  9. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |

  10. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  11. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  12. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  13. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  14. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  15. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  16. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  17. If (d(f(x)))/(dx) = g(x) AA x in [a, b] then int(a)^(b)f(x).g(x)dx is ...

    Text Solution

    |

  18. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  19. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  20. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |