Home
Class 12
MATHS
The value of the integral int(2)^(4) (sq...

The value of the integral `int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx` is

A

`sqrt((3)/(32))`

B

`(sqrt(3))/(32)`

C

`(32)/(sqrt(3))`

D

`-(sqrt(3))/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{2}^{4} \frac{\sqrt{x^2 - 4}}{x^4} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by rewriting the integrand: \[ I = \int_{2}^{4} \frac{\sqrt{x^2 - 4}}{x^4} \, dx \] Notice that we can factor out \( x^2 \) from the square root: \[ \sqrt{x^2 - 4} = \sqrt{x^2(1 - \frac{4}{x^2})} = x \sqrt{1 - \frac{4}{x^2}} \] Thus, the integral becomes: \[ I = \int_{2}^{4} \frac{x \sqrt{1 - \frac{4}{x^2}}}{x^4} \, dx = \int_{2}^{4} \frac{\sqrt{1 - \frac{4}{x^2}}}{x^3} \, dx \] ### Step 2: Substitution Let \( t = 1 - \frac{4}{x^2} \). Then we differentiate: \[ dt = \frac{8}{x^3} \, dx \quad \Rightarrow \quad dx = \frac{x^3}{8} \, dt \] We also need to change the limits of integration. When \( x = 2 \): \[ t = 1 - \frac{4}{2^2} = 1 - 1 = 0 \] When \( x = 4 \): \[ t = 1 - \frac{4}{4^2} = 1 - \frac{4}{16} = 1 - \frac{1}{4} = \frac{3}{4} \] Thus, the integral becomes: \[ I = \int_{0}^{\frac{3}{4}} \sqrt{t} \cdot \frac{1}{8} \, dt \] ### Step 3: Evaluate the integral Now we can evaluate the integral: \[ I = \frac{1}{8} \int_{0}^{\frac{3}{4}} t^{\frac{1}{2}} \, dt \] The integral of \( t^{\frac{1}{2}} \) is: \[ \int t^{\frac{1}{2}} \, dt = \frac{t^{\frac{3}{2}}}{\frac{3}{2}} = \frac{2}{3} t^{\frac{3}{2}} \] Thus, we have: \[ I = \frac{1}{8} \cdot \frac{2}{3} \left[ t^{\frac{3}{2}} \right]_{0}^{\frac{3}{4}} = \frac{1}{12} \left[ \left( \frac{3}{4} \right)^{\frac{3}{2}} - 0 \right] \] ### Step 4: Calculate the limits Now we calculate \( \left( \frac{3}{4} \right)^{\frac{3}{2}} \): \[ \left( \frac{3}{4} \right)^{\frac{3}{2}} = \frac{3^{\frac{3}{2}}}{4^{\frac{3}{2}}} = \frac{3\sqrt{3}}{8} \] So substituting back, we get: \[ I = \frac{1}{12} \cdot \frac{3\sqrt{3}}{8} = \frac{3\sqrt{3}}{96} = \frac{\sqrt{3}}{32} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{\sqrt{3}}{32}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

The value of integral int_(-2)^(4) x[x]dx is

The value of the integral int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

The value of integral int_(2)^(4)(dx)/(x) is :-

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

The value of the integral I=int_(0)^(a) (x^(4))/((a^(2)+x^(2))^(4))dx is

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the integral int_(-pi//4)^(pi//4) sin^(-4)x dx , is

The value of the integral int _0^oo 1/(1+x^4)dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The integral int(0)^(pi//2) f(sin 2 x)sin x dx is equal to

    Text Solution

    |

  2. int(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

    Text Solution

    |

  3. The value of the integral int(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

    Text Solution

    |

  4. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  5. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  6. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  7. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |

  8. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  9. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  10. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  11. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  12. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  13. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  14. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  15. If (d(f(x)))/(dx) = g(x) AA x in [a, b] then int(a)^(b)f(x).g(x)dx is ...

    Text Solution

    |

  16. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  17. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  18. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  19. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  20. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |