Home
Class 12
MATHS
int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))...

`int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx` equals

A

`(pi)/(2sqrt(2))`

B

`(pi^(2))/(2)`

C

`(pi^(2))/(2sqrt(2))`

D

`(pi^(2))/(2sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{2}} x \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \), we can use the symmetry property of definite integrals. Let's go through the steps: ### Step 1: Define the Integral Let: \[ I = \int_0^{\frac{\pi}{2}} x \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] ### Step 2: Use the Symmetry Property We can use the property of definite integrals: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] In our case, \( a = \frac{\pi}{2} \). Therefore, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \left( \sqrt{\tan\left(\frac{\pi}{2} - x\right)} + \sqrt{\cot\left(\frac{\pi}{2} - x\right)} \right) dx \] ### Step 3: Simplify the Functions Recall that: \[ \tan\left(\frac{\pi}{2} - x\right) = \cot x \quad \text{and} \quad \cot\left(\frac{\pi}{2} - x\right) = \tan x \] Thus, we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \left( \sqrt{\cot x} + \sqrt{\tan x} \right) dx \] This simplifies to: \[ I = \int_0^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] ### Step 4: Combine the Two Integrals Now, we can add the two expressions for \( I \): \[ 2I = \int_0^{\frac{\pi}{2}} x \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx + \int_0^{\frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] This simplifies to: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \frac{\pi}{2} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \right) dx \] ### Step 5: Evaluate the Integral Now, we can factor out \( \frac{\pi}{2} \): \[ 2I = \frac{\pi}{2} \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] Thus: \[ I = \frac{\pi}{4} \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \] ### Step 6: Evaluate the Integral of \( \sqrt{\tan x} + \sqrt{\cot x} \) The integral \( \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx \) can be evaluated using known results: \[ \int_0^{\frac{\pi}{2}} \sqrt{\tan x} \, dx = \int_0^{\frac{\pi}{2}} \sqrt{\cot x} \, dx = \frac{\pi}{2} \] Thus: \[ \int_0^{\frac{\pi}{2}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] ### Step 7: Final Result Substituting back into our expression for \( I \): \[ I = \frac{\pi}{4} \cdot \pi = \frac{\pi^2}{4} \] ### Conclusion The value of the integral is: \[ \int_0^{\frac{\pi}{2}} x \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = \frac{\pi^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] dx is equal to

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

int_0^(pi^2//4)(sinsqrt(x))/(sqrt(x))dx equals a. pi^2//8 b. pi//4 c. 2 d. 1

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate : int_(0)^((pi)/2)) (sqrt(cot x))/(sqrt(cot x)+ sqrt(tan x)) dx

Evaluate: int_0^(pi//2)(sqrt(sin x))/(sqrt(sin x)+sqrt(cos x))dx

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Evaluate : int_(0)^( pi//2) (sqrt( sec x) )/( sqrt(sec x ) + sqrt( cosec x) ) dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1),...

    Text Solution

    |

  2. If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n ...

    Text Solution

    |

  3. int0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

    Text Solution

    |

  4. Choose the correct answer The value of the integral int1/3 1((x-x^3)^(...

    Text Solution

    |

  5. Evaluate: int0^(100pi)sqrt((1-cos2x))dxdot

    Text Solution

    |

  6. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  7. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  8. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  9. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  10. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  11. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  12. If (d(f(x)))/(dx) = g(x) AA x in [a, b] then int(a)^(b)f(x).g(x)dx is ...

    Text Solution

    |

  13. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  14. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  15. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  16. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  17. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  18. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  19. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  20. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |