Home
Class 12
MATHS
The value of int(0)^(pi//2) (sin 8x log ...

The value of `int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx`, is

A

0

B

`pi`

C

`(5pi)/(2)`

D

`(3pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \log(\cot x)}{\cos(2x)} \, dx \), we can use the property of definite integrals. The property states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals Let's apply this property to our integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \log(\cot x)}{\cos(2x)} \, dx \] By substituting \( x \) with \( \frac{\pi}{2} - x \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(8\left(\frac{\pi}{2} - x\right)\right) \log\left(\cot\left(\frac{\pi}{2} - x\right)\right)}{\cos\left(2\left(\frac{\pi}{2} - x\right)\right)} \, dx \] ### Step 2: Simplify the terms Now, simplify each term: 1. \( \sin\left(8\left(\frac{\pi}{2} - x\right)\right) = \sin\left(4\pi - 8x\right) = -\sin(8x) \) 2. \( \log\left(\cot\left(\frac{\pi}{2} - x\right)\right) = \log(\tan x) \) 3. \( \cos\left(2\left(\frac{\pi}{2} - x\right)\right) = \cos(\pi - 2x) = -\cos(2x) \) Substituting these into the integral gives: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{-\sin(8x) \log(\tan x)}{-\cos(2x)} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \log(\tan x)}{\cos(2x)} \, dx \] ### Step 3: Combine the integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \log(\cot x)}{\cos(2x)} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \log(\tan x)}{\cos(2x)} \, dx \) Adding these two equations: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \left(\log(\cot x) + \log(\tan x)\right)}{\cos(2x)} \, dx \] Using the logarithmic identity \( \log(a) + \log(b) = \log(ab) \): \[ \log(\cot x) + \log(\tan x) = \log(1) = 0 \] Thus, we have: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \cdot 0}{\cos(2x)} \, dx = 0 \] ### Step 4: Solve for \( I \) This implies: \[ I = 0 \] ### Conclusion The value of the integral \( \int_{0}^{\frac{\pi}{2}} \frac{\sin(8x) \log(\cot x)}{\cos(2x)} \, dx \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

int_(0)^(pi//2) x sin x cos x dx

The value of int_(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx , is

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

int_(0)^(pi//2) sin 2x log cot x dx is equal to

int_(0)^(pi/4)(sin x+cos x)/(9+16 sin 2x)dx

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

Evaluate : int_(0)^((pi)/(2)) log (cot x)dx .

The value of int_(0)^(2pi) |cos x -sin x|dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. Evaluate: int(-1/2)^(1/2)[((x+1)/(x-1))^2+((x-1)/(x+1))^2-2]^(1/2)dx

    Text Solution

    |

  2. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  3. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  4. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  5. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  6. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  7. If (d(f(x)))/(dx) = g(x) AA x in [a, b] then int(a)^(b)f(x).g(x)dx is ...

    Text Solution

    |

  8. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  9. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  10. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  11. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  12. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  13. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  14. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  15. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  16. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  17. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  18. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  19. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  20. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |