Home
Class 12
MATHS
The value of int(0)^(pi//2) x^(10) sin ...

The value of `int_(0)^(pi//2) x^(10) sin x" dx"`, is then the value of `mu_(10)+90mu_(8)`, is

A

`9((pi)/(2))^(8)`

B

`((pi)/(2))^(9)`

C

`10((pi)/(2))^(9)`

D

`9((pi)/(2))^(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} x^{10} \sin x \, dx \) and find the value of \( \mu_{10} + 90\mu_{8} \), where \( \mu_n = \int_{0}^{\frac{\pi}{2}} x^n \sin x \, dx \), we will use integration by parts. ### Step 1: Set Up Integration by Parts We will apply the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = x^{10} \) (First function) - \( dv = \sin x \, dx \) (Second function) ### Step 2: Differentiate and Integrate Now, we differentiate \( u \) and integrate \( dv \): - \( du = 10x^{9} \, dx \) - \( v = -\cos x \) ### Step 3: Apply Integration by Parts Using the integration by parts formula: \[ I = \left[ -x^{10} \cos x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} -\cos x \cdot 10x^{9} \, dx \] This simplifies to: \[ I = \left[ -x^{10} \cos x \right]_{0}^{\frac{\pi}{2}} + 10 \int_{0}^{\frac{\pi}{2}} x^{9} \cos x \, dx \] ### Step 4: Evaluate the Boundary Terms Now we evaluate the boundary terms: \[ \left[ -x^{10} \cos x \right]_{0}^{\frac{\pi}{2}} = -\left( \left(\frac{\pi}{2}\right)^{10} \cdot 0 - 0 \cdot 1 \right) = 0 \] Thus, we have: \[ I = 0 + 10 \int_{0}^{\frac{\pi}{2}} x^{9} \cos x \, dx \] Let \( J = \int_{0}^{\frac{\pi}{2}} x^{9} \cos x \, dx \). ### Step 5: Apply Integration by Parts Again Now we need to evaluate \( J \) using integration by parts again. Let: - \( u = x^{9} \) - \( dv = \cos x \, dx \) Then: - \( du = 9x^{8} \, dx \) - \( v = \sin x \) Applying integration by parts: \[ J = \left[ x^{9} \sin x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \sin x \cdot 9x^{8} \, dx \] Evaluating the boundary terms: \[ \left[ x^{9} \sin x \right]_{0}^{\frac{\pi}{2}} = \left( \left(\frac{\pi}{2}\right)^{9} \cdot 1 - 0 \cdot 0 \right) = \left(\frac{\pi}{2}\right)^{9} \] Thus: \[ J = \left(\frac{\pi}{2}\right)^{9} - 9 \int_{0}^{\frac{\pi}{2}} x^{8} \sin x \, dx \] Let \( K = \int_{0}^{\frac{\pi}{2}} x^{8} \sin x \, dx \), then: \[ J = \left(\frac{\pi}{2}\right)^{9} - 9K \] ### Step 6: Substitute Back Now substitute \( J \) back into the equation for \( I \): \[ I = 10J = 10\left(\left(\frac{\pi}{2}\right)^{9} - 9K\right) = 10\left(\frac{\pi}{2}\right)^{9} - 90K \] ### Step 7: Relate \( I \) and \( K \) From the definition of \( \mu \): \[ \mu_{10} + 90\mu_{8} = I \] Thus: \[ \mu_{10} + 90\mu_{8} = 10\left(\frac{\pi}{2}\right)^{9} \] ### Final Result Therefore, the value of \( \mu_{10} + 90\mu_{8} \) is: \[ \mu_{10} + 90\mu_{8} = 10\left(\frac{\pi}{2}\right)^{9} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(pi//6)^(pi//3) (1)/( sin 2x) dx is

int_(0)^(pi//2) x sin x cos x dx

The value of int_(0)^(pi)|cos x|^(3)dx is :

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(pi//2) (x+sin x)/(1+cos x)dx , is

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

The value of int_(0)^(2pi)cos^(5)x dx , is

If u_(n) = int_(0)^(pi/2) x^(n)sinxdx , then the value of u_(10) + 90 u_(8) is : (a) 9(pi/2)^(8) (b) (pi/2)^(9) (c) 10 (pi/2)^(9) (d) 9 (pi/2)^(9)

The value of int_(0)^(2pi) cos^(99)x dx , is

int_(0)^(pi) x sin x cos^(2)x\ dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of the integral int(1//e)^(e) |logx|dx, is

    Text Solution

    |

  2. The value of int(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx, is

    Text Solution

    |

  3. The value of int(0)^(pi//2) x^(10) sin x" dx", is then the value of m...

    Text Solution

    |

  4. T h ev a l u eofint0^(pi/2)(dx)/(1+tan^3x)i s 0 (b) 1 (c) pi/2 (d...

    Text Solution

    |

  5. The value of int0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >...

    Text Solution

    |

  6. If (d(f(x)))/(dx) = g(x) AA x in [a, b] then int(a)^(b)f(x).g(x)dx is ...

    Text Solution

    |

  7. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  8. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  9. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  10. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  11. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  12. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  13. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  14. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  15. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  16. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  17. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  18. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  19. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  20. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |