Home
Class 12
MATHS
The value of the integral int(0)^(1) (1)...

The value of the integral `int_(0)^(1) (1)/((1+x^(2))^(3//2))dx` is

A

`1//2`

B

`1//sqrt(2)`

C

1

D

`sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{1} \frac{1}{(1 + x^2)^{3/2}} \, dx, \] we will use the substitution \( x = \tan(\theta) \). ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, the differential \( dx \) becomes: \[ dx = \sec^2(\theta) \, d\theta. \] ### Step 2: Change of Limits When \( x = 0 \): \[ \theta = \tan^{-1}(0) = 0. \] When \( x = 1 \): \[ \theta = \tan^{-1}(1) = \frac{\pi}{4}. \] ### Step 3: Rewrite the Integral Now, we can rewrite the integral in terms of \( \theta \): \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2(\theta)}{(1 + \tan^2(\theta))^{3/2}} \, d\theta. \] Using the identity \( 1 + \tan^2(\theta) = \sec^2(\theta) \), we have: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2(\theta)}{(\sec^2(\theta))^{3/2}} \, d\theta. \] ### Step 4: Simplify the Integral This simplifies to: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2(\theta)}{\sec^3(\theta)} \, d\theta = \int_{0}^{\frac{\pi}{4}} \cos(\theta) \, d\theta. \] ### Step 5: Integrate Now we can integrate \( \cos(\theta) \): \[ I = \int_{0}^{\frac{\pi}{4}} \cos(\theta) \, d\theta = \left[ \sin(\theta) \right]_{0}^{\frac{\pi}{4}}. \] ### Step 6: Evaluate the Limits Evaluating the limits gives: \[ I = \sin\left(\frac{\pi}{4}\right) - \sin(0) = \frac{1}{\sqrt{2}} - 0 = \frac{1}{\sqrt{2}}. \] Thus, the value of the integral is \[ \boxed{\frac{1}{\sqrt{2}}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(1)xcot^(-1)(1-x^(2)+x^(4)) dx is

The value of the integral int_(-1)^(1)(dx)/((1+x^(2))(1+e^(x)) is equal to

The value of the integral int_(0)^(a) (1)/(x+sqrt(a^(2)-x^(2)))dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(0)^(1) cot^(-1) (1-x+x^(2))dx , is

The value of the integral int _0^oo 1/(1+x^4)dx is

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral int_(-1)^(1) (x-[2x]) dx,is

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. For any integer n,the integral overset(pi)underset(0)int e^(sin^(2)x)c...

    Text Solution

    |

  2. The value of the integral int(0)^(3) sqrt(3+x^(3))dxlies in the inter...

    Text Solution

    |

  3. The value of the integral int(0)^(1) (1)/((1+x^(2))^(3//2))dx is

    Text Solution

    |

  4. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  5. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  6. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  7. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  8. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  9. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  10. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  11. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  12. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  13. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  14. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  15. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  16. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  17. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  18. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  19. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  20. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |