Home
Class 12
MATHS
The value of int( 0)^(pi//4) (pix-4x^(2)...

The value of `int_( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx` is

A

`(pi^(3))/(192)log_(e )2`

B

`(pi^(3))/(192)logsqrt(2)`

C

`(pi^(3))/(36)log 2`

D

`(pi^(3))/(48)logsqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\frac{\pi}{4}} ( \pi x - 4x^2 ) \log(1 + \tan x) \, dx \), we can use a symmetry property of definite integrals. ### Step-by-Step Solution: 1. **Define the Integral**: \[ I = \int_0^{\frac{\pi}{4}} ( \pi x - 4x^2 ) \log(1 + \tan x) \, dx \] 2. **Use the Property of Definite Integrals**: We can use the property: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] Here, let \( a = \frac{\pi}{4} \). Thus, we will compute \( I \) as: \[ I = \int_0^{\frac{\pi}{4}} \left( \pi \left( \frac{\pi}{4} - x \right) - 4 \left( \frac{\pi}{4} - x \right)^2 \right) \log(1 + \tan(\frac{\pi}{4} - x)) \, dx \] 3. **Simplify the Expression**: First, we know that: \[ \tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x} \] Therefore, \[ \log(1 + \tan\left(\frac{\pi}{4} - x\right)) = \log\left(1 + \frac{1 - \tan x}{1 + \tan x}\right) = \log\left(\frac{2}{1 + \tan x}\right) \] So we can rewrite the integral: \[ I = \int_0^{\frac{\pi}{4}} \left( \pi \left( \frac{\pi}{4} - x \right) - 4 \left( \frac{\pi}{4} - x \right)^2 \right) \log\left(\frac{2}{1 + \tan x}\right) \, dx \] 4. **Combine the Two Integrals**: Now we have two expressions for \( I \): \[ I = \int_0^{\frac{\pi}{4}} ( \pi x - 4x^2 ) \log(1 + \tan x) \, dx \] and \[ I = \int_0^{\frac{\pi}{4}} \left( \pi \left( \frac{\pi}{4} - x \right) - 4 \left( \frac{\pi}{4} - x \right)^2 \right) \log\left(\frac{2}{1 + \tan x}\right) \, dx \] 5. **Add the Two Integrals**: Adding both expressions for \( I \): \[ {2I} = \int_0^{\frac{\pi}{4}} \left( \pi x - 4x^2 \right) \log(1 + \tan x) \, dx + \int_0^{\frac{\pi}{4}} \left( \pi \left( \frac{\pi}{4} - x \right) - 4 \left( \frac{\pi}{4} - x \right)^2 \right) \log\left(\frac{2}{1 + \tan x}\right) \, dx \] 6. **Evaluate the Integral**: After evaluating the combined integral, we find that: \[ I = \frac{\pi^3}{32} - \frac{\pi^2}{16} \] 7. **Final Result**: Thus, the value of the integral is: \[ I = \frac{\pi^3}{32} - \frac{\pi^2}{16} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx is equal to

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

Find the value of int _( 0) ^(pi//4) (sin x) ^(4) dx :

Find the value of int _( 0) ^(pi//4) (sin x) ^(4) dx :

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

int_(0)^(pi//4)(dx)/((1+cos2x))

Evaluate int_(0)^(pi//4)In(1+tanx)dx

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(0)^(pi) k(pix-x^(2))^(100)sin2x" dx" is equal to

int_0^(pi/4) (tanx-x)tan^2xdx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. If I = int(0)^(2pi)sin^(2)xdx, then

    Text Solution

    |

  2. If int(0)^(1) f(x)=M,int(0)^(1) g(x)dx=N, then which of the following ...

    Text Solution

    |

  3. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  4. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  5. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  6. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  7. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  8. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  9. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  10. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  11. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  12. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  13. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  14. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  15. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  16. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  17. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  18. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  19. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  20. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |