Home
Class 12
MATHS
The value of int(0)^(2pi) cos^(99)x dx, ...

The value of `int_(0)^(2pi) cos^(99)x dx`, is

A

1

B

-1

C

99

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{2\pi} \cos^{99} x \, dx \), we can use properties of definite integrals. ### Step 1: Identify the function and the interval We have the function \( f(x) = \cos^{99} x \) and we are integrating over the interval from \( 0 \) to \( 2\pi \). ### Step 2: Apply the property of definite integrals We can use the property of definite integrals which states: \[ \int_{0}^{2a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx \quad \text{if } f(2a - x) = f(x) \] In our case, \( 2a = 2\pi \), so \( a = \pi \). We need to check if \( f(2\pi - x) = f(x) \). ### Step 3: Calculate \( f(2\pi - x) \) We find: \[ f(2\pi - x) = \cos^{99}(2\pi - x) = \cos^{99}(x) \] This shows that \( f(2\pi - x) = f(x) \), so we can apply the property: \[ \int_{0}^{2\pi} \cos^{99} x \, dx = 2 \int_{0}^{\pi} \cos^{99} x \, dx \] ### Step 4: Evaluate \( \int_{0}^{\pi} \cos^{99} x \, dx \) Next, we will apply the property again on the interval \( [0, \pi] \). Here, we set \( 2a = \pi \), so \( a = \frac{\pi}{2} \). We need to check if \( f(\pi - x) = -f(x) \). ### Step 5: Calculate \( f(\pi - x) \) We find: \[ f(\pi - x) = \cos^{99}(\pi - x) = (-\cos x)^{99} = -\cos^{99} x \] This shows that \( f(\pi - x) = -f(x) \), which means: \[ \int_{0}^{\pi} \cos^{99} x \, dx = 0 \] ### Step 6: Conclude the evaluation Since: \[ \int_{0}^{\pi} \cos^{99} x \, dx = 0 \] it follows that: \[ \int_{0}^{2\pi} \cos^{99} x \, dx = 2 \cdot 0 = 0 \] Thus, the value of the integral \( \int_{0}^{2\pi} \cos^{99} x \, dx \) is \( \boxed{0} \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2pi)cos^(5)x dx , is

int_(0)^(pi/2) cos^(2) x dx

int_(0)^(pi//4) cos^(2) x dx

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_(0)^(pi)|cos x|^(3)dx is :

int_(0)^(pi//2) cos 3x dx

The value of int_(0) ^(2pi) cos ^(-1) ((1- tan ^(2) ""(x)/(2 ))/(1+ tan ^(2)""(x)/(2))) dx is:

int_(0)^(pi/2) cos 2x dx

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

Evaluate : int_(0)^(pi) |cos x| dx

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int( 0)^(pi//4) (pix-4x^(2))log(1+tanx)dx is

    Text Solution

    |

  2. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  3. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  4. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  5. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  6. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  7. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  8. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  9. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  10. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  11. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  12. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  13. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  14. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  15. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  16. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  17. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  18. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  19. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  20. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |