Home
Class 12
MATHS
If f(a+x)=f(x), then int(0)^(na) f(x)dx ...

If f(a+x)=f(x), then `int_(0)^(na) f(x)dx` is equal to `(n in N)`

A

`(n-1)overset(a)underset(0)int f(x)dx`

B

`noverset(a)underset(0)int f(x)dx`

C

`overset((n-1a))underset(0)int f(x)dx`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given condition and the integral we want to evaluate. ### Step-by-Step Solution: 1. **Understanding the Given Condition:** We are given that \( f(a + x) = f(x) \). This implies that the function \( f(x) \) is periodic with a period of \( a \). This means that the function repeats its values every \( a \) units. **Hint:** Recognize that the condition indicates periodicity, which can be used to simplify the integral. 2. **Setting Up the Integral:** We want to evaluate the integral \( \int_{0}^{na} f(x) \, dx \) for \( n \in \mathbb{N} \). **Hint:** Identify the limits of integration and the periodic nature of the function to simplify the integral. 3. **Using the Periodicity:** Since \( f(x) \) is periodic with period \( a \), we can express the integral over the interval \( [0, na] \) as a sum of integrals over the intervals of length \( a \): \[ \int_{0}^{na} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{a}^{2a} f(x) \, dx + \int_{2a}^{3a} f(x) \, dx + \ldots + \int_{(n-1)a}^{na} f(x) \, dx \] **Hint:** Break the integral into segments that match the period of the function. 4. **Evaluating Each Integral:** Each integral over one period is the same due to the periodicity: \[ \int_{ka}^{(k+1)a} f(x) \, dx = \int_{0}^{a} f(x) \, dx \quad \text{for } k = 0, 1, 2, \ldots, n-1 \] Therefore, we can write: \[ \int_{0}^{na} f(x) \, dx = n \int_{0}^{a} f(x) \, dx \] **Hint:** Use the fact that the integral over each period is equal to the integral over the first period. 5. **Final Result:** Thus, we conclude that: \[ \int_{0}^{na} f(x) \, dx = n \int_{0}^{a} f(x) \, dx \] **Hint:** The final expression shows how the integral over multiple periods relates to the integral over a single period. ### Conclusion: The integral \( \int_{0}^{na} f(x) \, dx \) equals \( n \int_{0}^{a} f(x) \, dx \), confirming that the periodic nature of \( f(x) \) allows us to simplify the evaluation of the integral over multiple periods.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 1|57 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test 2|56 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|87 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx

If f(a+b-x) =f(x) , then int_(a)^(b) x f(x) dx is equal to

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If n in N , then int_(0)^(n) (x-[x])dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

OBJECTIVE RD SHARMA ENGLISH-DEFINITE INTEGRALS-Exercise
  1. The value of int(-pi//2)^(pi//2) sin{log(x+sqrt(x^(2)+1)}dx is

    Text Solution

    |

  2. The value of int(0)^(2pi) cos^(99)x dx, is

    Text Solution

    |

  3. If f(a+x)=f(x), then int(0)^(na) f(x)dx is equal to (n in N)

    Text Solution

    |

  4. If f(t) is an odd function, then prove that varphi(x)=inta^xf(t)dt is ...

    Text Solution

    |

  5. If f(x) is an integrable function over every interval on the real line...

    Text Solution

    |

  6. If I(1)=int(3pi)^(0) f(cos^(2)x)dx and I(2)=int(pi)^(0) f(cos^(2)x) th...

    Text Solution

    |

  7. If f(x) is a quadratic polynomial in x such that 6int0^1 f(x)dx-{f(0...

    Text Solution

    |

  8. The value of integral int(-2)^(4) x[x]dx is

    Text Solution

    |

  9. If h(a)=h(b), the value of the integral inta^b [f(g(h(x))]^(-1)f'(g...

    Text Solution

    |

  10. Given that, F(x)=(1)/(x^(2))int(4)^(x)(4t^(2)-2F'(t))dt, find F'(4).

    Text Solution

    |

  11. It is known that f(x) is an odd function in the interval [p/2, p/2] an...

    Text Solution

    |

  12. Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2...

    Text Solution

    |

  13. int(-pi+4)^(pi//4) (tan^(2)x)/(1+a^(x))dx is equal to

    Text Solution

    |

  14. The value of int(0)^(pi//2) cosec(x-pi//3)cosec(x-pi//6)dx is

    Text Solution

    |

  15. The value of int(-1)^(1)(x|x|)dx is equal to

    Text Solution

    |

  16. int0^3 |x^(3)+x^(2)+3x|dx is equal to

    Text Solution

    |

  17. Evaluate: int(-1)^1(x^3+|x|+1)/(x^2+2|x|+1)dx

    Text Solution

    |

  18. Evaluate: int(-pi/2)^(pi/2)log{(a x^2+b x+c)/(a x^2-b x+c)(a+b)|sinx|}...

    Text Solution

    |

  19. For any natural number n, the value of the integral int(0)^(sqrt(n))...

    Text Solution

    |

  20. For any n in R^(+), the value of the integral int(0)^(n[x]) (x-[x])d...

    Text Solution

    |